ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-vortex configurations in trapped Bose-Einstein condensates

363   0   0.0 ( 0 )
 نشر من قبل Jorge Amin Seman Harutinian
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the creation of three-vortex clusters in a $^{87}Rb$ Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulation, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation, and as a vortex-antivortex-vortex cluster. The linear configurations are very likely the first experimental signatures of predicted stationary vortex clusters.



قيم البحث

اقرأ أيضاً

Quantum vortex reconnections can be considered as a fundamental unit of interaction in complex turbulent quantum gases. Understanding the dynamics of single vortex reconnections as elementary events is an essential precursor to the explanation of the emergent properties of turbulent quantum gases. It is thought that a lone pair of quantum vortex lines will inevitably interact given a sufficiently long time. This paper investigates aspects of reconnections of quantum vortex pairs imprinted in a Bose-Einstein condensate held in an anisotropic three dimensional trap using an exact many-body treatment. In particular the impact of the interaction strength and the trap anisotropy in the reconnection time is studied. It is found that interaction strength has no effect on reconnection time over short time scales and that the trap anisotropy can cause the edge of the condensate to interfere with the reconnection process. It is also found that the initially coherent system fragments very slowly, even for relatively large interaction strength, and therefore the system likes to stay condensed during the reconnections.
Reconnections and interactions of filamentary coherent structures play a fundamental role in the dynamics of fluids, plasmas and nematic liquid crystals. In fluids, vortex reconnections redistribute energy and helicity among the length scales and ind uce fine-scale turbulent mixing. Unlike ordinary fluids where vorticity is a continuous field, in quantum fluids vorticity is concentrated into discrete (quantized) vortex lines turning vortex reconnections into isolated events, making it conceptually easier to study. Here we report experimental and numerical observations of three-dimensional quantum vortex interactions in a cigar-shaped atomic Bose-Einstein Condensate (BEC). In addition to standard reconnections, already numerically and experimentally observed in homogeneous systems away from boundaries, we show that double reconnections, rebounds and ejections can also occur as a consequence of the non-homogeneous, confined nature of the system.
279 - T. P. Simula , T. Mizushima , 2009
We have theoretically studied vortex waves of Bose-Einstein condensates in elongated harmonic traps. Our focus is on the axisymmetric varicose waves and helical Kelvin waves of singly quantized vortex lines. Growth and decay dynamics of both types of vortex waves are discussed. We propose a method to experimentally create these vortex waves on demand.
Dilute ultracold quantum gases form an ideal and highly tunable system in which superuidity can be studied. Recently quantum turbulence in Bose-Einstein condensates was reported [PRL 103, 045310 (2009)], opening up a new experimental system that can be used to study quantum turbulence. A novel feature of this system is that vortex cores now have a finite size. This means that the vortices are no longer one dimensional features in the condensate, but that the radial behaviour and excitations might also play an important role in the study of quantum turbulence in Bose-Einstein condensates. In this paper we investigate these radial modes using a simplified variational model for the vortex core. This study results in the frequencies of the radial modes, which can be compared with the frequencies of the thoroughly studied Kelvin modes. From this comparison we find that the lowest (l=0) radial mode has a frequency in the same order of magnitude as the Kelvin modes. However the radial modes still have a larger energy than the Kelvin modes, meaning that the Kelvin modes will still constitute the preferred channel for energy decay in quantum turbulence.
In a numerical experiment based on Gross-Pitaevskii formalism, we demonstrate unique topological quantum coherence in optically trapped Bose-Einstein condensates (BECs). Exploring the fact that vortices in rotating BEC can be pinned by a geometric ar rangement of laser beams, we show the parameter range in which vortex-antivortex molecules or multiquantum vortices are formed as a consequence of the optically imposed symmetry. Being low-energy states, we discuss the conditions for spontaneous nucleation of these unique molecules and their direct experimental observation, and provoke the potential use of the phase print of an antivortex or a multiquantum vortex when realized in unconventional circumstances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا