ﻻ يوجد ملخص باللغة العربية
The continuous monitoring of a quantum system strongly influences the emergence of chaotic dynamics near the transition from the quantum regime to the classical regime. Here we present a feedback control scheme that uses adaptive measurement techniques to control the degree of chaos in the driven-damped quantum Duffing oscillator. This control relies purely on the measurement backaction on the system, making it a uniquely quantum control, and is only possible due to the sensitivity of chaos to measurement. We quantify the effectiveness of our control by numerically computing the quantum Lyapunov exponent over a wide range of parameters. We demonstrate that adaptive measurement techniques can control the onset of chaos in the system, pushing the quantum-classical boundary further into the quantum regime.
In this work we study the non-Markovian behaviour of a qubit coupled to an environment in which the corresponding classical dynamics change from integrable to chaotic. We show that in the transition region, where the dynamics has both regular islands
The Loschmidt echo (LE) is a measure of the sensitivity of quantum mechanics to perturbations in the evolution operator. It is defined as the overlap of two wave functions evolved from the same initial state but with slightly different Hamiltonians.
We study the influence of a chaotic environment in the evolution of an open quantum system. We show that there is an inverse relation between chaos and non-Markovianity. In particular, we remark on the deep relation of the short time non-Markovian be
We study the quantum dissipative Duffing oscillator across a range of system sizes and environmental couplings under varying semiclassical approximations. Using spatial (based on Kullback-Leibler distances between phase-space attractors) and temporal
Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they