ترغب بنشر مسار تعليمي؟ اضغط هنا

On the evolution of a binary system with arbitrarily misaligned orbital and stellar angular momenta due to quasi-stationary tides

204   0   0.0 ( 0 )
 نشر من قبل Pavel Ivanov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the evolution of a binary system interacting due to tidal effects without restriction on the orientation of the orbital, and where significant, spin angular momenta, and orbital eccentricity. We work in the low tidal forcing frequency regime in the equilibrium tide approximation. Internal degrees of freedom are fully taken into account for one component, the primary. In the case of the companion the spin angular momentum is assumed small enough to be neglected but internal energy dissipation is allowed for as this can be significant for orbital circularisation in the case of planetary companions. We obtain a set of equations governing the evolution of the orbit resulting from tidal effects. These depend on the masses and radii of the binary components, the form and orientation of the orbit, and for each involved component, the spin rate, the Coriolis force, the normalised rate of energy dissipation associated with the equilibrium tide due to radiative processes and viscosity, and the classical apsidal motion constant. These depend on stellar parameters with no need of additional assumptions or a phenomenological approach as has been invoked in the past. They can be used to determine the evolution of systems with initial significant misalignment of spin and orbital angular momenta as hypothesised for systems containing Hot Jupiters. The inclusion of the Coriolis force may lead to evolution of the inclination between orbital and spin angular momenta and precession of the orbital plane which may have observational consequences.



قيم البحث

اقرأ أيضاً

125 - S.V. Chernov 2017
We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes $t=4.57times10^9$ yr closely corresponds to our Sun. We show that a planet of one Jupiter mass revolving around a star of one solar mass will fall onto the star in the main-sequence lifetime of the star due to dynamical tides if the initial orbital period of the planet is less than $P_{rm orb}approx2.8$ days. Planets of one Jupiter mass with an orbital period$P_{rm orb}approx2$ days or shorter will fall onto a star of one and a half and two solar masses in the mainsequence lifetime of the star.
We report our analyses of the multi-epoch (2015-2017) ALMA archival data of the Class II binary system XZ Tau at Bands 3, 4 and 6. The millimeter dust continuum images show compact, unresolved (r <~ 15 au) circumstellar disks (CSDs) around the indivi dual binary stars; XZ Tau A and B, with a projected separation of ~ 39 au. The 12CO (2-1) emission associated with those CSDs traces the Keplerian rotations, whose rotational axes are misaligned with each other (P.A. ~ -5 deg for XZ Tau A and ~ 130 deg for XZ Tau B). The similar systemic velocities of the two CSDs (VLSR ~ 6.0 km s-1) suggest that the orbital plane of the binary stars is close to the plane of the sky. From the multi-epoch ALMA data, we have also identified the relative orbital motion of the binary. Along with the previous NIR data, we found that the elliptical orbit (e = 0.742+0.025-0.034, a = 0.172+0.002-0.003, and {omega} = -54.2+2.0-4.7 deg) is preferable to the circular orbit. Our results suggest that the two CSDs and the orbital plane of the XZ Tau system are all misaligned with each other, and possible mechanisms to produce such a configuration are discussed. Our analyses of the multi-epoch ALMA archival data demonstrate the feasibility of time-domain science with ALMA.
We present ALMA observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emiss ion in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ~9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ~72 degrees, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.
Orbits of close-in planets can shrink significantly due to dissipation of tidal energy in a host star. This process can result in star-planet coalescence within the Galactic lifetime. In some cases, such events can be accompanied by an optical or/and UV/X-ray transient. Potentially, these outbursts can be observed in near future with new facilities such as LSST from distances about few Mpc. We use a population synthesis model to study this process and derive the rate of star-planet mergers of different types. Mostly, planets are absorbed by red giants. However, these events, happening with the rate about 3 per year, mostly do not produce detectable transients. The rate of mergers with main sequence stars depends on the effectiveness of tidal dissipation; for reasonable values of stellar tidal quality factor, such events happen in a Milky Way-like galaxy approximately once in 70 yrs or more rarely. This rate is dominated by planets with low masses. Such events do not produce bright transients having maximum luminosities $lesssim 10^{36.5}$erg s$^{-1}$. Brighter events, related to massive planets, with maximum luminosity $sim 10^{37.5}$--$10^{38}$erg s$^{-1}$, have the rate nearly five times smaller.
We study the excitation and damping of tides in close binary systems, accounting for the leading order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct effects: three-mode nonlinear interactions and nonli near excitation of modes by the time-varying gravitational potential of the companion. This paper presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism is applicable to binaries containing stars, planets, or compact objects, we focus on solar type stars with stellar or planetary companions. Our primary results include: (1) The linear tidal solution often used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited gravity waves are unstable to parametric resonance for companion masses M > 10-100 M_Earth at orbital periods P = 1-10 days. The nearly static equilibrium tide is, however, parametrically stable except for solar binaries with P < 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes waves to grow so rapidly that they must be treated as traveling waves rather than standing waves. (3) We find a novel form of parametric instability in which a single parent wave excites a very large number of daughter waves (N = 10^3[P / 10 days]) and drives them as a single coherent unit with growth rates that are ~N times faster than the standard three wave parametric instability. (4) Independent of the parametric instability, tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing; this coupling appears particularly efficient at draining energy out of the dynamical tide and may be more important than either wave breaking or parametric resonance at determining the nonlinear dissipation of the dynamical tide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا