ترغب بنشر مسار تعليمي؟ اضغط هنا

Change in the Orbital Period of a Binary System Due to Dynamical Tides for Main-Sequence Stars

126   0   0.0 ( 0 )
 نشر من قبل Sergey Chernov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.V. Chernov




اسأل ChatGPT حول البحث

We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes $t=4.57times10^9$ yr closely corresponds to our Sun. We show that a planet of one Jupiter mass revolving around a star of one solar mass will fall onto the star in the main-sequence lifetime of the star due to dynamical tides if the initial orbital period of the planet is less than $P_{rm orb}approx2.8$ days. Planets of one Jupiter mass with an orbital period$P_{rm orb}approx2$ days or shorter will fall onto a star of one and a half and two solar masses in the mainsequence lifetime of the star.

قيم البحث

اقرأ أيضاً

We consider the evolution of a binary system interacting due to tidal effects without restriction on the orientation of the orbital, and where significant, spin angular momenta, and orbital eccentricity. We work in the low tidal forcing frequency reg ime in the equilibrium tide approximation. Internal degrees of freedom are fully taken into account for one component, the primary. In the case of the companion the spin angular momentum is assumed small enough to be neglected but internal energy dissipation is allowed for as this can be significant for orbital circularisation in the case of planetary companions. We obtain a set of equations governing the evolution of the orbit resulting from tidal effects. These depend on the masses and radii of the binary components, the form and orientation of the orbit, and for each involved component, the spin rate, the Coriolis force, the normalised rate of energy dissipation associated with the equilibrium tide due to radiative processes and viscosity, and the classical apsidal motion constant. These depend on stellar parameters with no need of additional assumptions or a phenomenological approach as has been invoked in the past. They can be used to determine the evolution of systems with initial significant misalignment of spin and orbital angular momenta as hypothesised for systems containing Hot Jupiters. The inclusion of the Coriolis force may lead to evolution of the inclination between orbital and spin angular momenta and precession of the orbital plane which may have observational consequences.
General relativity predicts that short orbital period binaries emit significant gravitational radiation, and the upcoming Laser Interferometer Space Antenna (LISA) is expected to detect tens of thousands of such systems; however, few have been identi fied, and only one is eclipsing--the double white dwarf binary SDSS J065133.338+284423.37, which has an orbital period of 12.75 minutes. Here, we report the discovery of an eclipsing double white dwarf binary system with an orbital period of only 6.91 minutes, ZTF J153932.16+502738.8. This system has an orbital period close to half that of SDSS J065133.338+284423.37 and an orbit so compact that the entire binary could fit within the diameter of the planet Saturn. The system exhibits a deep eclipse, and a double-lined spectroscopic nature. We observe rapid orbital decay, consistent with that expected from general relativity. ZTF J153932.16+502738.8 is a significant source of gravitational radiation close to the peak of LISAs sensitivity, and should be detected within the first week of LISA observations.
The presence of a close, low-mass companion is thought to play a substantial and perhaps necessary role in shaping post-Asymptotic Giant Branch and Planetary Nebula outflows. During post-main-sequence evolution, radial expansion of the primary star, accompanied by intense winds, can significantly alter the binary orbit via tidal dissipation and mass loss. To investigate this, we couple stellar evolution models (from the zero-age main-sequence through the end of the post-main sequence) to a tidal evolution code. The binarys fate is determined by the initial masses of the primary and the companion, the initial orbit (taken to be circular), and the Reimers mass-loss parameter. For a range of these parameters, we determine whether the orbit expands due to mass loss or decays due to tidal torques. Where a common envelope (CE) phase ensues, we estimate the final orbital separation based on the energy required to unbind the envelope. These calculations predict period gaps for planetary and brown dwarf companions to white dwarfs. The upper end of the gap is the shortest period at which a CE phase is avoided. The lower end is the longest period at which companions survive their CE phase. For binary systems with 1 $M_odot$ progenitors, we predict no Jupiter-mass companions with periods $lesssim$270 days. Once engulfed, Jupiter-mass companions do not survive a CE phase. For binary systems consisting of a 1 $M_odot$ progenitor with a companion 10 times the mass of Jupiter, we predict a period gap between $sim$0.1 and $sim$380 days. These results are consistent with both the detection of a $sim$50 $M_{rm J}$ brown dwarf in a $sim$0.003 AU ($sim$0.08 day) orbit around the white dwarf WD 0137-349 and the tentative detection of a $sim$2 $M_{rm J}$ planet in a $gtrsim$2.7 AU ($gtrsim$4 year) orbit around the white dwarf GD66.
Pre-main sequence (PMS) stars evolve into main sequence (MS) phase over a period of time. Interestingly, we found a scarcity of studies in existing literature that examines and attempts to better understand the stars in PMS to MS transition phase. Th e purpose of the present study is to detect such rare stars, which we named as Transition Phase (TP) candidates - stars evolving from the PMS to the MS phase. We identified 98 TP candidates using photometric analysis of a sample of 2167 classical Be (CBe) and 225 Herbig Ae/Be (HAeBe) stars. This identification is done by analyzing the near- and mid-infrared excess and their location in the optical color-magnitude diagram. The age and mass of 58 of these TP candidates are determined to be between 0.1-5 Myr and 2-10.5 M$_odot$, respectively. The TP candidates are found to possess rotational velocity and color excess values in between CBe and HAeBe stars, which is reconfirmed by generating a set of synthetic samples using the machine learning approach.
96 - S.V. Chernov 2017
Zahns theory of dynamical tides is analyzed critically. We compare the results of this theory with our numerical calculations for stars with a convective core and a radiative envelope and with masses of one and a half and two solar masses. We show th at for a binary system consisting of stars of one and a half or two solar masses and a point object with a mass equal to the solar mass and with an orbital period of one day under the assumption of a dense spectrum and moderately rapid dissipation, the evolution time scales of the semimajor axis will be shorter than those in Zahns theory by several orders of magnitude
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا