ﻻ يوجد ملخص باللغة العربية
We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes $t=4.57times10^9$ yr closely corresponds to our Sun. We show that a planet of one Jupiter mass revolving around a star of one solar mass will fall onto the star in the main-sequence lifetime of the star due to dynamical tides if the initial orbital period of the planet is less than $P_{rm orb}approx2.8$ days. Planets of one Jupiter mass with an orbital period$P_{rm orb}approx2$ days or shorter will fall onto a star of one and a half and two solar masses in the mainsequence lifetime of the star.
We consider the evolution of a binary system interacting due to tidal effects without restriction on the orientation of the orbital, and where significant, spin angular momenta, and orbital eccentricity. We work in the low tidal forcing frequency reg
General relativity predicts that short orbital period binaries emit significant gravitational radiation, and the upcoming Laser Interferometer Space Antenna (LISA) is expected to detect tens of thousands of such systems; however, few have been identi
The presence of a close, low-mass companion is thought to play a substantial and perhaps necessary role in shaping post-Asymptotic Giant Branch and Planetary Nebula outflows. During post-main-sequence evolution, radial expansion of the primary star,
Pre-main sequence (PMS) stars evolve into main sequence (MS) phase over a period of time. Interestingly, we found a scarcity of studies in existing literature that examines and attempts to better understand the stars in PMS to MS transition phase. Th
Zahns theory of dynamical tides is analyzed critically. We compare the results of this theory with our numerical calculations for stars with a convective core and a radiative envelope and with masses of one and a half and two solar masses. We show th