ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial expansion of the star formation history in galaxies

68   0   0.0 ( 0 )
 نشر من قبل Daniel Jim\\'enez-L\\'opez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. There are typically two different approaches to infer the mass formation history (MFH) of a given galaxy from its luminosity in different bands. Non-parametric methods are known for their flexibility and accuracy, while parametric models are more computationally efficient. Aims. In this work we propose an alternative that combines the advantages of both techniques, based on a polynomial expansion around the present time. Methods. In our approach, the MFH is decomposed through an orthonormal basis of N polynomia in lookback time. To test the proposed framework, synthetic observations are generated from models based on common analytical approximations (exponential, delayed-tau and Gaussian star formation histories). A normalized distance is used to measure the quality of the fit, and the input MFH are compared with the polynomial reconstructions both at the present time as well as through cosmic evolution. Results. The observed luminosities are reproduced with an accuracy of around 10 per cent for a constant star formation rate (N=1) and better for higher-order polynomia. Our method provides good results on the reconstruction of the total stellar mass, star formation rate and even its first derivative for smooth star formation histories, but it has difficulties in reproducing variations on short timescales and/or star formation histories peaking at the earliest times of the Universe. Conclusions. The polynomial expansion appears to be a promising alternative to other analytical functions used in parametric methods, combining both speed and flexibility.

قيم البحث

اقرأ أيضاً

If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environ ment. There is strong observational support for the hierarchical assembly of galaxies, but our insight into this assembly comes from sifting through the resolved field populations of the surviving galaxies we see today, in order to reconstruct their star formation histories, chemical evolution, and kinematics. To obtain the detailed distribution of stellar ages and metallicities over the entire life of a galaxy, one needs multi-band photometry reaching solar-luminosity main sequence stars. The Hubble Space Telescope can obtain such data in the low-density regions of Local Group galaxies. To perform these essential studies for a fair sample of the Local Universe, we will require observational capabilities that allow us to extend the study of resolved stellar populations to much larger galaxy samples that span the full range of galaxy morphologies, while also enabling the study of the more crowded regions of relatively nearby galaxies. With such capabilities in hand, we will reveal the detailed history of star formation and chemical evolution in the universe.
Theory predicts that cosmological gas accretion plays a fundamental role fuelling star formation in galaxies. However, a detailed description of the accretion process to be used when interpreting observations is still lacking. Using the state-of-the- art cosmological hydrodynamical simulation eagle, we work out the chemical inhomogeneities arising in the disk of galaxies due to the randomness of the accretion process. In low-mass systems and outskirts of massive galaxies, low metallicity regions are associated with enhanced star-formation, a trend that reverses in the centers of massive galaxies. These predictions agree with the relation between surface density of star formation rate and metallicity observed in the local spiral galaxies from the MaNGA survey. Then, we analyse the origin of the gas that produces stars at two key epochs, z simeq 0 and z simeq 2. The main contribution comes from gas already in the galaxy about 1 Gyr before stars are formed, with a share from external gas that is larger at high redshift. The accreted gas may come from major and minor mergers, but also as gravitationally unbound gas and from mergers with dark galaxies (i.e., haloes where more than 95 % of the baryon mass is in gas). We give the relative contribution of these sources of gas as a function of stellar mass (8 < log Mstar < 11). Even at z = 0, some low-mass galaxies form a significant fraction of their total stellar mass during the last Gyr from mergers with dark galaxies.
We present a new method to determine the star formation and metal enrichment histories of any resolved stellar system. This method is based on the fact that any observed star in a colour-magnitude diagram will have a certain probability of being asso ciated with an isochrone characterised by an age t and metallicity [Fe/H] (i.e. to have formed at the time and with the metallicity of that isochrone). We formulate this as a maximum likelihood problem that is then solved with a genetic algorithm. We test the method with synthetic simple and complex stellar populations. We also present tests using real data for open and globular clusters. We are able to determine parameters for the clusters (t, [Fe/H]) that agree well with results found in the literature. Our tests on complex stellar populations show that we can recover the star formation history and age-metallicity relation very accurately. Finally, we look at the history of the Carina dwarf galaxy using deep BVI data. Our results compare well with what we know about the history of Carina.
To further our knowledge of the complex physical process of galaxy formation, it is essential that we characterize the formation and evolution of large databases of galaxies. The spectral synthesis STARLIGHT code of Cid Fernandes et al. (2004) was de signed for this purpose. Results of STARLIGHT are highly dependent on the choice of input basis of simple stellar population (SSP) spectra. Speed of the code, which uses random walks through the parameter space, scales as the square of the number of basis spectra, making it computationally necessary to choose a small number of SSPs that are coarsely sampled in age and metallicity. In this paper, we develop methods based on diffusion map (Lafon & Lee, 2006) that, for the first time, choose appropriate bases of prototype SSP spectra from a large set of SSP spectra designed to approximate the continuous grid of age and metallicity of SSPs of which galaxies are truly composed. We show that our techniques achieve better accuracy of physical parameter estimation for simulated galaxies. Specifically, we show that our methods significantly decrease the age-metallicity degeneracy that is common in galaxy population synthesis methods. We analyze a sample of 3046 galaxies in SDSS DR6 and compare the parameter estimates obtained from different basis choices.
We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). The resulting color-magnitude diagram (CMD) reaches more than a magnitu de below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ~10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ~10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ~2). The star formation rate increased dramatically ~6-8 Gyr ago (z ~ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M(HI)/M(stellar), dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا