ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Distance to Uncontrollability and Quantum Speed Limits

358   0   0.0 ( 0 )
 نشر من قبل Daniel Burgarth
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Distance to Uncontrollability is a crucial concept in classical control theory. Here, we introduce Quantum Distance to Uncontrollability as a measure how close a universal quantum system is to a non-universal one. This allows us to provide a quantitative version of the Quantum Speed Limit, decomposing the bound into a geometric and dynamical component. We consider several physical examples including globally controlled solid state qubits and a cross-Kerr system, showing that the Quantum Distance to Uncontrollability provides a precise meaning to spectral crowding, weak interactions and other bottlenecks to universality. We suggest that this measure should be taken into consideration in the design of quantum technology.



قيم البحث

اقرأ أيضاً

Bounds of the minimum evolution time between two distinguishable states of a system can help to assess the maximal speed of quantum computers and communication channels. We study the quantum speed limit time of a composite quantum states in the prese nce of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exactly expressions of quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical to quantum decoherence.
Geometric quantum speed limits quantify the trade-off between the rate with which quantum states can change and the resources that are expended during the evolution. Counterdiabatic driving is a unique tool from shortcuts to adiabaticity to speed up quantum dynamics while completely suppressing nonequilibrium excitations. We show that the quantum speed limit for counterdiabatically driven systems undergoing quantum phase transitions fully encodes the Kibble-Zurek mechanism by correctly predicting the transition from adiabatic to impulse regimes. Our findings are demonstrated for three scenarios, namely the transverse field Ising, the Landau-Zener, and the Lipkin-Meshkov-Glick models.
We consider the implementation of two-qubit gates when the physical systems used to realize the qubits are weakly anharmonic and therefore possess additional quantum states in the accessible energy range. We analyze the effect of the additional quant um states on the maximum achievable speed for quantum gates in the qubit state space. By calculating the minimum gate time using optimal control theory, we find that higher energy levels can help make two-qubit gates significantly faster than the reference value based on simple qubits. This speedup is a result of the higher coupling strength between higher energy levels. We then analyze the situation where the pulse optimization algorithm avoids pulses that excite the higher levels. We find that in this case the presence of the additional states can lead to a significant reduction in the maximum achievable gate speed. We also compare the optimal control gate times with those obtained using the cross-resonance/selective-darkening gate protocol. We find that the latter, with some parameter optimization, can be used to achieve a relatively fast implementation of the CNOT gate. These results can help the search for optimized gate implementations in realistic quantum computing architectures, such as those based on superconducting qubits. They also provide guidelines for desirable conditions on anharmonicity that would allow optimal utilization of the higher levels to achieve fast quantum gates.
The classical version of Mandelstam-Tamm speed limit based on the Wigner function in phase space is reported by B. Shanahan et al. [Phys. Rev. Lett. 120, 070401 (2018)]. In this paper, the Margolus-Levitin speed limit across the quantum-to-classical transition is given in phase space based on the trace distance. The Margolus-Levitin speed limit is set by the Schatten L1 norm of the generator of time dependent evolution for both the quantum and classical domains. As an example, the time-dependent harmonic oscillator is considered to illustrate the result.
One of the fundamental physical limits on the speed of time evolution of a quantum state is known in the form of the celebrated Mandelshtam-Tamm inequality. This inequality gives an answer to the question on how fast an isolated quantum system can ev olve from its initial state to an orthogonal one. In its turn, the Fleming bound is an extension of the Mandelshtam-Tamm inequality that gives an optimal speed bound for the evolution between non-orthogonal initial and final states. In the present work, we are concerned not with a single state but with a whole (possibly infinite-dimensional) subspace of the system states that are subject to the Schroedinger evolution. By using the concept of maximal angle between subspaces we derive an optimal estimate on the speed of such a subspace evolution that may be viewed as a natural generalization of the Fleming bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا