ترغب بنشر مسار تعليمي؟ اضغط هنا

Margolus-Levitin speed limit across quantum to classical regimes based on trace distance

64   0   0.0 ( 0 )
 نشر من قبل Shao-Xiong Wu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The classical version of Mandelstam-Tamm speed limit based on the Wigner function in phase space is reported by B. Shanahan et al. [Phys. Rev. Lett. 120, 070401 (2018)]. In this paper, the Margolus-Levitin speed limit across the quantum-to-classical transition is given in phase space based on the trace distance. The Margolus-Levitin speed limit is set by the Schatten L1 norm of the generator of time dependent evolution for both the quantum and classical domains. As an example, the time-dependent harmonic oscillator is considered to illustrate the result.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the unified bound of quantum speed limit time in open systems based on the modified Bures angle. This bound is applied to the damped Jaynes-Cummings model and the dephasing model, and the analytical quantum speed limit t ime is obtained for both models. As an example, the maximum coherent qubit state with white noise is chosen as the initial states for the damped Jaynes-Cummings model. It is found that the quantum speed limit time in both the non-Markovian and the Markovian regimes can be decreased by the white noise compared with the pure state. In addition, for the dephasing model, we find that the quantum speed limit time is not only related to the coherence of initial state and non-Markovianity, but also dependent on the population of initial excited state.
Distance to Uncontrollability is a crucial concept in classical control theory. Here, we introduce Quantum Distance to Uncontrollability as a measure how close a universal quantum system is to a non-universal one. This allows us to provide a quantita tive version of the Quantum Speed Limit, decomposing the bound into a geometric and dynamical component. We consider several physical examples including globally controlled solid state qubits and a cross-Kerr system, showing that the Quantum Distance to Uncontrollability provides a precise meaning to spectral crowding, weak interactions and other bottlenecks to universality. We suggest that this measure should be taken into consideration in the design of quantum technology.
168 - A.K. Pati , S.R. Jain , A. Mitra 2002
We investigate if physical laws can impose limit on computational time and speed of a quantum computer built from elementary particles. We show that the product of the speed and the running time of a quantum computer is limited by the type of fundame ntal interactions present inside the system. This will help us to decide as to what type of interaction should be allowed in building quantum computers in achieving the desired speed.
Quantum speed limit time defines the limit on the minimum time required for a quantum system to evolve between two states. Investigation of bounds on speed limit time of quantum system under non-unitary evolution is of fundamental interest, as it rev eals interesting connections to quantum (non-)Markovianity. Here, we discuss the characteristics of quantum speed limit time as a function of quantum memory, quantified as the deviation from temporal self-similarity of quantum dynamical maps for CP-divisible as well as indivisible maps. This provides an operational meaning to CP-divisible (non-)Markovianity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا