ترغب بنشر مسار تعليمي؟ اضغط هنا

Speed limits for quantum gates with weakly anharmonic qubits

105   0   0.0 ( 0 )
 نشر من قبل Sahel Ashhab
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the implementation of two-qubit gates when the physical systems used to realize the qubits are weakly anharmonic and therefore possess additional quantum states in the accessible energy range. We analyze the effect of the additional quantum states on the maximum achievable speed for quantum gates in the qubit state space. By calculating the minimum gate time using optimal control theory, we find that higher energy levels can help make two-qubit gates significantly faster than the reference value based on simple qubits. This speedup is a result of the higher coupling strength between higher energy levels. We then analyze the situation where the pulse optimization algorithm avoids pulses that excite the higher levels. We find that in this case the presence of the additional states can lead to a significant reduction in the maximum achievable gate speed. We also compare the optimal control gate times with those obtained using the cross-resonance/selective-darkening gate protocol. We find that the latter, with some parameter optimization, can be used to achieve a relatively fast implementation of the CNOT gate. These results can help the search for optimized gate implementations in realistic quantum computing architectures, such as those based on superconducting qubits. They also provide guidelines for desirable conditions on anharmonicity that would allow optimal utilization of the higher levels to achieve fast quantum gates.

قيم البحث

اقرأ أيضاً

Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress, and the dramatic recent demonstration of photon blockade, there are still issues with optimal coupling and gate operation involving high-quality cavities. Here we show dynamic control techniques that allow scalable cavity-QED based quantum gates, that use the full bandwidth of the cavities. When applied to quantum gates, these techniques allow an order of magnitude increase in operating speed, and two orders of magnitude reduction in cavity Q, over passive cavity-QED architectures. Our methods exploit Stark shift based Q-switching, and are ideally suited to solid-state integrated optical approaches to quantum computing.
There are well-known protocols for performing CNOT quantum logic with qubits coupled by particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for quantum computation involve qubits or qubits and res onators coupled by more complicated and less symmetric interactions. Here we consider a widely applicable model of weakly but otherwise arbitrarily coupled two-level systems, and use quantum gate design techniques to derive a simple and intuitive CNOT construction. Useful variations and extensions of the solution are given for common special cases.
Bounds of the minimum evolution time between two distinguishable states of a system can help to assess the maximal speed of quantum computers and communication channels. We study the quantum speed limit time of a composite quantum states in the prese nce of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exactly expressions of quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical to quantum decoherence.
117 - M. Micuda , R. Starek , I. Straka 2015
We propose and experimentally demonstrate a scheme for implementation of a maximally entangling quantum controlled-Z gate between two weakly interacting systems. We conditionally enhance the interqubit coupling by quantum interference. Both before an d after the interqubit interaction, one of the qubits is coherently coupled to an auxiliary quantum system, and finally it is projected back onto qubit subspace. We experimentally verify the practical feasibility of this technique by using a linear optical setup with weak interferometric coupling between single-photon qubits. Our procedure is universally applicable to a wide range of physical platforms including hybrid systems such as atomic clouds or optomechanical oscillators coupled to light.
We show how the spin independent scattering between two identical flying qubits can be used to implement an entangling quantum gate between them. We consider one dimensional models with a delta interaction in which the qubits undergoing the collision are distinctly labeled by their opposite momenta. The logical states of the qubit may either be two distinct spin (or other internal) states of a fermion or a boson or two distinct momenta magnitudes of a spinless boson. Our scheme could be added to linear optics-like quantum information processing to enhance its efficiency, and can also aid the scaling of quantum computers based on static qubits without resorting to photons. Three distinct ingredients -- the quantum indistinguishability of the qubits, their interaction, and their dimensional confinement, come together in a natural way to enable the quantum gate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا