ﻻ يوجد ملخص باللغة العربية
Diabetes is one of the most common disease in individuals. textit{Diabetic retinopathy} (DR) is a complication of diabetes, which could lead to blindness. Automatic DR grading based on retinal images provides a great diagnostic and prognostic value for treatment planning. However, the subtle differences among severity levels make it difficult to capture important features using conventional methods. To alleviate the problems, a new deep learning architecture for robust DR grading is proposed, referred to as SEA-Net, in which, spatial attention and channel attention are alternatively carried out and boosted with each other, improving the classification performance. In addition, a hybrid loss function is proposed to further maximize the inter-class distance and reduce the intra-class variability. Experimental results have shown the effectiveness of the proposed architecture.
Diabetic retinopathy (DR) is a common retinal disease that leads to blindness. For diagnosis purposes, DR image grading aims to provide automatic DR grade classification, which is not addressed in conventional research methods of binary DR image clas
Diabetic retinopathy (DR) is one of the most common eye conditions among diabetic patients. However, vision loss occurs primarily in the late stages of DR, and the symptoms of visual impairment, ranging from mild to severe, can vary greatly, adding t
Diabetic retinopathy (DR) is one of the leading causes of blindness. However, no specific symptoms of early DR lead to a delayed diagnosis, which results in disease progression in patients. To determine the disease severity levels, ophthalmologists n
Manually annotating medical images is extremely expensive, especially for large-scale datasets. Self-supervised contrastive learning has been explored to learn feature representations from unlabeled images. However, unlike natural images, the applica
Assessing the degree of disease severity in biomedical images is a task similar to standard classification but constrained by an underlying structure in the label space. Such a structure reflects the monotonic relationship between different disease g