ﻻ يوجد ملخص باللغة العربية
The uncertainty relations in hydrodynamics are numerically studied. We first give a review for the formulation of the generalized uncertainty relations in the stochastic variational method (SVM), following the paper by two of the present authors [Phys. Lett. A382, 1472 (2018)]. In this approach, the origin of the finite minimum value of uncertainty is attributed to the non-differentiable (virtual) trajectory of a quantum particle and then both of the Kennard and Robertson-Schr{o}dinger inequalities in quantum mechanics are reproduced. The same non-differentiable trajectory is applied to the motion of fluid elements in hydrodynamics. By introducing the standard deviations of position and momentum for fluid elements, the uncertainty relations in hydrodynamics are derived. These are applicable even to the Gross-Pitaevskii equation and then the field-theoretical uncertainty relation is reproduced. We further investigate numerically the derived relations and find that the behaviors of the uncertainty relations for liquid and gas are qualitatively different. This suggests that the uncertainty relations in hydrodynamics are used as a criterion to classify liquid and gas in fluid.
A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equat
We develop numerical schemes for solving the isothermal compressible and incompressible equations of fluctuating hydrodynamics on a grid with staggered momenta. We develop a second-order accurate spatial discretization of the diffusive, advective and
The steady motion and deformation of a lipid-bilayer vesicle translating through a circular tube in low Reynolds number pressure-driven flow are investigated numerically using an axisymmetric boundary element method. This fluid-structure interaction
The behaviour of microscopic swimmers has previously been explored near large scale confining geometries and in the presence of very small-scale surface roughness. Here we consider an intermediate case of how a simple microswimmer, the tangential sph
We study the dynamics of the interface between two immiscible fluids in contact with a chemically homogeneous moving solid plate. We consider the generic case of two fluids with any viscosity ratio and of a plate moving in either directions (pulled o