ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamics of catheter biofilm formation

92   0   0.0 ( 0 )
 نشر من قبل Oscar Sotolongo Costa
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A hydrodynamic model is proposed to describe one of the most critical problems in intensive medical care units: the formation of biofilms inside central venous catheters. The incorporation of approximate solutions for the flow-limited diffusion equation leads to the conclusion that biofilms grow on the internal catheter wall due to the counter-stream diffusion of blood through a very thin layer close to the wall. This biological deposition is the first necessary step for the subsequent bacteria colonization.



قيم البحث

اقرأ أيضاً

It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we expla in that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such viscous liquid state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.
In this paper we derive a pore-scale model for permeable biofilm formation in a two-dimensional pore. The pore is divided in two phases: water and biofilm. The biofilm is assumed to consist of four components: water, extracellular polymeric substance s (EPS), active bacteria, and dead bacteria. The flow of water is modeled by the Stokes equation whereas a diffusion-convection equation is involved for the transport of nutrients. At the water/biofilm interface, nutrient transport and shear forces due to the water flux are considered. In the biofilm, the Brinkman equation for the water flow, transport of nutrients due to diffusion and convection, displacement of the biofilm components due to reproduction/dead of bacteria, and production of EPS are considered. A segregated finite element algorithm is used to solve the mathematical equations. Numerical simulations are performed based on experimentally determined parameters. The stress coefficient is fitted to the experimental data. To identify the critical model parameters, a sensitivity analysis is performed. The Sobol sensitivity indices of the input parameters are computed based on uniform perturbation by $pm 10 %$ of the nominal parameter values. The sensitivity analysis confirms that the variability or uncertainty in none of the parameters should be neglected.
The study reports the aspects of postimpact hydrodynamics of ferrofluid droplets on superhydrophobic SH surfaces in the presence of a horizontal magnetic field. A wide gamut of dynamics was observed by varying the impact Weber number We, the Hartmann number Ha and the magnetic field strength manifested through the magnetic Bond number Bom. For a fixed We 60, we observed that at moderately low Bom 300, droplet rebound off the SH surface is suppressed. The noted We is chosen to observe various impact outcomes and to reveal the consequent ferrohydrodynamic mechanisms. We also show that ferrohydrodynamic interactions leads to asymmetric spreading, and the droplet spreads preferentially in a direction orthogonal to the magnetic field lines. We show analytically that during the retraction regime, the kinetic energy of the droplet is distributed unequally in the transverse and longitudinal directions due to the Lorentz force. This ultimately leads to suppression of droplet rebound. We study the role of Bom at fixed We 60, and observed that the liquid lamella becomes unstable at the onset of retraction phase, through nucleation of holes, their proliferation and rupture after reaching a critical thickness only on SH surfaces, but is absent on hydrophilic surfaces. We propose an analytical model to predict the onset of instability at a critical Bom. The analytical model shows that the critical Bom is a function of the impact We, and the critical Bom decreases with increasing We. We illustrate a phase map encompassing all the post impact ferrohydrodynamic phenomena on SH surfaces for a wide range of We and Bom.
In this study we investigated the capabilities of the mesh-free, Lagrangian particle method (Smoothed Particle Hydrodynamics, SPH) to simulate the detailed hydrodynamic processes generated by both spilling and plunging breaking waves within the surf zone. The weakly-compressible SPH code DualSPHysics was applied to simulate wave breaking over two distinct bathymetric profiles (a plane beach and fringing reef) and compared to experimental flume measurements of waves, flows, and mean water levels. Despite the simulations spanning very different wave breaking conditions (including an extreme case with violently plunging waves on an effectively dry reef slope), the model was able to reproduce a wide range of relevant surf zone hydrodynamic processes using a fixed set of numerical parameters. This included accurate predictions of the nonlinear evolution of wave shapes (e.g., asymmetry and skewness properties), rates of wave dissipation within the surf zone, and wave setup distributions. By using this mesh-free approach, the model was able to resolve the critical crest region within the breaking waves, which provided robust predictions of the wave-induced mass fluxes within the surf zone responsible for the undertow. Within this breaking crest region, the model results capture how the potential energy of the organized wave motion is initially converted to kinetic energy and then dissipated, which reproduces the distribution of wave forces responsible for wave setup generation across the surf zone. Overall, the results reveal how the mesh-free SPH approach can accurately reproduce the detailed wave breaking processes with comparable skill to state-of-the-art mesh-based Computational Fluid Dynamics (CFD) models, and thus can be applied to provide valuable new physical insight into surf zone dynamics.
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multi-phase flows with accuracy and proper interphase management. The implementation was performed in the DualSPH ysics code and validated for different canonical experiments, such as the single-phase and multiphase Poiseuille and Couette test cases. The method is accurate even for the multiphase case for which two phases are simulated. The shifting algorithm and the variable smoothing length formalism has been applied in the multiphase SPH model to improve the numerical results at the interphase even when it is highly deformed and non-linear effects become important. The obtained accuracy in the validation tests and the good interphase definition in the instability cases indicate an important improvement in the numerical results compared with single-phase and multiphase models where the shifting algorithm and the variable smoothing length formalism are not applied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا