ﻻ يوجد ملخص باللغة العربية
The behaviour of microscopic swimmers has previously been explored near large scale confining geometries and in the presence of very small-scale surface roughness. Here we consider an intermediate case of how a simple microswimmer, the tangential spherical squirmer, behaves adjacent to singly- and doubly-periodic sinusoidal surface topographies that spatially oscillate with an amplitude that is an order of magnitude less than the swimmer size and wavelengths within an order of magnitude of this scale. The nearest neighbour regularised Stokeslet method is used for numerical explorations after validating its accuracy for a spherical tangential squirmer that swims stably near a flat surface. The same squirmer is then introduced to the different surface topographies. The key governing factor in the resulting swimming behaviour is the size of the squirmer relative to the surface topography wavelength. When the squirmer is much larger, or much smaller, than the surface topography wavelength then directional guidance is not observed. Once the squirmer size is on the scale of the topography wavelength limited guidance is possible, often with local capture in the topography troughs. However, complex dynamics can also emerge, especially when the initial configuration is not close to alignment along topography troughs or above topography crests. In contrast to sensitivity in alignment and the topography wavelength, reductions in the amplitude of the surface topography or variations in the shape of the periodic surface topography do not have extensive impacts on the squirmer behaviour. Our findings more generally highlight that detailed numerical explorations are necessary to determine how surface topographies may interact with a given swimmer that swims stably near a flat surface and whether surface topographies may be designed to provide such swimmers with directional guidance.
The emerging field of self-driven active particles in fluid environments has recently created significant interest in the biophysics and bioengineering communities owing to their promising future biomedical and technological applications. These micro
The dynamics of an adhesive two-dimensional vesicle doublet under various flow conditions is investigated numerically using a high-order, adaptive-in-time boundary integral method. In a quiescent flow, two nearby vesicles move slowly towards each oth
We investigate regular configurations of a small number of particles settling under gravity in a viscous fluid. The particles do not touch each other and can move relative to each other. The dynamics is analyzed in the point-particle approximation. A
A numerical study is presented to analyze the thermal mechanisms of unsteady, supersonic granular flow, by means of hydrodynamic simulations of the Navier-Stokes granular equations. For this purpose a paradigmatic problem in granular dynamics such as
The present article experimentally and theoretically probes the evaporation kinetics of sessile saline droplets. Observations reveal that presence of solvated ions leads to modulated evaporation kinetics, which is further a function of surface wettab