ترغب بنشر مسار تعليمي؟ اضغط هنا

A new mathematical model for dispersion of Rayleigh wave and a machine learning based inversion solver

111   0   0.0 ( 0 )
 نشر من قبل Chen Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, by introducing the seismic impedance tensor we propose a new Rayleigh wave dispersion function in a homogeneous and layered medium of the Earth, which provides an efficient way to compute the dispersion curve -- a relation between the frequencies and the phase velocities. With this newly established forward model, based on the Mixture Density Networks (MDN) we develop a machine learning based inversion approach, named as FW-MDN, for the problem of estimating the S-wave velocity from the dispersion curves. The method FW-MDN deals with the non-uniqueness issue encountered in studies that invert dispersion curves for crust and upper mantle models and attains a satisfactory performance on the dataset with various noise structure. Numerical simulations are performed to show that the FW-MDN possesses the characteristics of easy calculation, efficient computation, and high precision for the model characterization.



قيم البحث

اقرأ أيضاً

We present and analyze a new iterative solver for implicit discretizations of a simplified Boltzmann-Poisson system. The algorithm builds on recent work that incorporated a sweeping algorithm for the Vlasov-Poisson equations as part of nested inner-o uter iterative solvers for the Boltzmann-Poisson equations. The new method eliminates the need for nesting and requires only one transport sweep per iteration. It arises as a new fixed-point formulation of the discretized system which we prove to be contractive for a given electric potential. We also derive an accelerator to improve the convergence rate for systems in the drift-diffusion regime. We numerically compare the efficiency of the new solver, with and without acceleration, with a recently developed nested iterative solver.
117 - Wangtao Lu 2020
This paper proposes, for wave propagating in a globally perturbed half plane with a perfectly conducting step-like surface, a sharp Sommerfeld radiation condition (SRC) for the first time, an analytic formula of the far-field pattern, and a high-accu racy numerical solver. We adopt the Wiener-Hopf method to compute the Green function for a cracked half plane, a background for the perturbed half plane. We rigorously show that the Green function asymptotically satisfies a universal-direction SRC (uSRC) and radiates purely outgoing at infinity. This helps to propose an implicit transparent boundary condition for the scattered wave, by either a cylindrical incident wave due to a line source or a plane incident wave. Then, a well-posedness theory is established via an associated variational formulation. The theory reveals that the scattered wave, post-subtracting a known wave field, satisfies the same uSRC so that its far-field pattern is accessible theoretically. For a plane-wave incidence, asymptotic analysis shows that merely subtracting reflected plane waves, due to non-uniform heights of the step-like surface at infinity, from the scattered wave in respective regions produces a discontinuous wave satisfying the uSRC as well. Numerically, we adopt a previously developed perfectly-matched-layer (PML) boundary-integral-equation method to solve the problem. Numerical results demonstrate that the PML truncation error decays exponentially fast as thickness or absorbing power of the PML increases, of which the convergence relies heavily on the Green function exponentially decaying in the PML.
The Kolmogorov $n$-width of the solution manifolds of transport-dominated problems can decay slowly. As a result, it can be challenging to design efficient and accurate reduced order models (ROMs) for such problems. To address this issue, we propose a new learning-based projection method to construct nonlinear adaptive ROMs for transport problems. The construction follows the offline-online decomposition. In the offline stage, we train a neural network to construct adaptive reduced basis dependent on time and model parameters. In the online stage, we project the solution to the learned reduced manifold. Inheriting the merits from both deep learning and the projection method, the proposed method is more efficient than the conventional linear projection-based methods, and may reduce the generalization error of a solely learning-based ROM. Unlike some learning-based projection methods, the proposed method does not need to take derivatives of the neural network in the online stage.
367 - Xinchao Jiang , Hu Wang , Yu Li 2019
Moving Morphable Component (MMC) based topology optimization approach is an explicit algorithm since the boundary of the entity explicitly described by its functions. Compared with other pixel or node point-based algorithms, it is optimized through t he parameter optimization of a Topological Description Function (TDF). However, the optimized results partly depend on the selection of related parameters of Method of Moving Asymptote (MMA), which is the optimizer of MMC based topology optimization. Practically, these parameters are tuned according to the experience and the feasible solution might not be easily obtained, even the solution might be infeasible due to improper parameter setting. In order to address these issues, a Machine Learning (ML) based parameter tuning strategy is proposed in this study. An Extra-Trees (ET) based image classifier is integrated to the optimization framework, and combined with Particle Swarm Optimization (PSO) algorithm to form a closed loop. It makes the optimization process be free from the manual parameter adjustment and the reasonable solution in the design domain is obtained. In this study, two classical cases are presented to demonstrate the efficiency of the proposed approach.
This paper studies the PML method for wave scattering in a half space of homogeneous medium bounded by a two-dimensional, perfectly conducting, and locally defected periodic surface, and develops a high-accuracy boundary-integral-equation (BIE) solve r. Along the vertical direction, we place a PML to truncate the unbounded domain onto a strip and prove that the PML solution converges linearly to the true solution in the physical subregion of the strip with the PML thickness. Laterally, we divide the unbounded strip into three regions: a region containing the defect and two semi-waveguide regions, separated by two vertical line segments. In both semi-waveguides, we prove the well-posedness of an associated scattering problem so as to well define a Neumann-to-Dirichlet (NtD) operator on the associated vertical segment. The two NtD operators, serving as exact lateral boundary conditions, reformulate the unbounded strip problem as a boundary value problem onto the defected region. Due to the periodicity of the semi-waveguides, both NtD operators turn out to be closely related to a Neumann-marching operator, governed by a nonlinear Riccati equation. It is proved that the Neumann-marching operators are contracting, so that the PML solution decays exponentially fast along both lateral directions. The consequences culminate in two opposite aspects. Negatively, the PML solution cannot exponentially converge to the true solution in the whole physical region of the strip. Positively, from a numerical perspective, the Riccati equations can now be efficiently solved by a recursive doubling procedure and a high-accuracy PML-based BIE method so that the boundary value problem on the defected region can be solved efficiently and accurately. Numerical experiments demonstrate that the PML solution converges exponentially fast to the true solution in any compact subdomain of the strip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا