ترغب بنشر مسار تعليمي؟ اضغط هنا

High-frequency radio synchrotron maser emission from relativistic shocks

69   0   0.0 ( 0 )
 نشر من قبل Dmitry Khangulyan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the conditions required for the production of the synchrotron maser emission downstream of a relativistic shock. We show that for weakly magnetized shocks, synchrotron maser emission can be generated at frequencies significantly exceeding the relativistic gyrofrequency. This high-frequency maser emission seems to be the most suitable for interpreting peculiar GHz radio sources. To illustrate this, we consider a magnetar flare model for FRBs. Our analysis shows that the maser emission is radiated away from the central magnetar, which guarantees a short duration of bursts independently of the shock wave radius. If FRBs are produced by the high-frequency maser emission then one can significantly relax the requirements for several key parameters: the magnetic field strength at the production site, luminosity of the flare, and the production site bulk Lorentz factor. To check the feasibility of this model, we study the statistical relation between powerful magnetar flares and the rate of FRBs. The expected ratio is derived by convoluting the redshift-dependent magnetar density with their flare luminosity function above the energy limit determined by the FRB detection threshold. We obtain that only a small fraction, (sim10^{-5}), of powerful magnetar flares trigger FRBs. This ratio agrees surprisingly well with our estimates: we obtained that (10%) of magnetars should be in the evolutionary phase suitable for the production of FRBs, and only (10^{-4}) of all flares are expected to be weakly magnetized, which is a necessary condition for the high-frequency maser emission.

قيم البحث

اقرأ أيضاً

110 - Di Xiao , Zi-Gao Dai 2020
Very recently a fast radio burst (FRB) 200428 associated with a strong X-ray burst from the Galactic magnetar SGR 1935+2154 has been detected, which is direct evidence supporting the magnetar progenitor models of FRBs. Assuming the FRB radiation mech anism is synchrotron maser emission from magnetized shocks, we develop a specific scenario by introducing a density jump structure of upstream medium, and thus the double-peaked character of FRB 200428 is a natural outcome. The luminosity and emission frequency of two pulses can be well explained in this scenario. Furthermore, we find that the synchrotron emission of shock-accelerated electrons is in the X-ray band, which therefore can be responsible for at least a portion of observed X-ray fluence. With proper upgrade, this density jump scenario can be potentially applied to FRBs with multiple peaks in the future.
Relativistic magnetized shocks are a natural source of coherent emission, offering a plausible radiative mechanism for Fast Radio Bursts (FRBs). We present first-principles 3D simulations that provide essential information for the FRB models based on shocks: the emission efficiency, spectrum, and polarization. The simulated shock propagates in an $e^pm$ plasma with magnetization $sigma>1$. The measured fraction of shock energy converted to coherent radiation is $simeq 10^{-3} , sigma^{-1}$, and the energy-carrying wavenumber of the wave spectrum is $simeq 4 ,omega_{rm c}/c$, where $omega_{rm c}$ is the upstream gyrofrequency. The ratio of the O-mode and X-mode energy fluxes emitted by the shock is $simeq 0.4,sigma^{-1}$. The dominance of the X-mode at $sigmagg 1$ is particularly strong, approaching 100% in the spectral band around $2,omega_{rm c}$. We also provide a detailed description of the emission mechanism for both X- and O-modes.
147 - S. Walg , A. Achterberg 2020
The class of Double-Double Radio Galaxies (DDRGs) relates to episodic jet outbursts. How various regions and components add to the total intensity in radio images is less well known. In this paper we synthesize synchrotron images for DDRGs based on s pecial relativistic hydrodynamic simulations, making advanced approximations for the magnetic fields. We study the synchrotron images for: Three different radial jet profiles; Ordered, entangled or mixed magnetic fields; Spectral ageing from synchrotron cooling; The contribution from different jet components; The viewing angle and Doppler (de-)boosting; The various epochs of the evolution of the DDRG. To link our results to observational data, we adopt to J1835+6204 as a reference source. In all cases the synthesized synchrotron images show two clear pairs of hotspots, in the inner and outer lobes. The best resemblance is obtained for the piecewise isochoric jet model, for a viewing angle of approximately $vartheta sim -71^{circ}$, i.e. inclined with the lower jet towards the observer, with predominantly entangled ($gtrsim 70$ per cent of the magnetic pressure) in turbulent, rather than ordered fields. The effects of spectral ageing become significant when the ratio of observation frequencies and cut-off frequency $ u_{rm obs}/ u_{infty,0} gtrsim 10^{-3}$, corresponding to $sim 3 cdot 10^2$ MHz. For viewing angles $vartheta lesssim -30^{circ}$, a DDRG morphology can no longer be recognized. The second jets must be injected within $lesssim$ 4 per cent of the lifetime of the first jets for a DDRG structure to emerge, which is relevant for Active Galactic Nuclei feedback constraints.
We present relativistic magnetohydrodynamic (RMHD) simulations of stationary overpressured magnetized relativistic jets which are characterized by their dominant type of energy, namely internal, kinetic, or magnetic. Each model is threaded by a helic al magnetic field with a pitch angle of $45^circ$ and features a series of recollimation shocks produced by the initial pressure mismatch, whose strength and number varies as a function of the dominant type of energy. We perform a study of the polarization signatures from these models by integrating the radiative transfer equations for synchrotron radiation using as inputs the RMHD solutions. These simulations show a top-down emission asymmetry produced by the helical magnetic field and a progressive confinement of the emission into a jet spine as the magnetization increases and the internal energy of the non-thermal population is considered to be a constant fraction of the thermal one. Bright stationary components associated with the recollimation shocks appear presenting a relative intensity modulated by the Doppler boosting ratio between the pre-shock and post-shock states. Small viewing angles show a roughly bimodal distribution in the polarization angle due to the helical structure of the magnetic field, which is also responsible for the highly stratified degree of linear polarization across the jet width. In addition, small variations of the order of $26^circ$ are observed in the polarization angle of the stationary components, which can be used to identify recollimation shocks in astrophysical jets.
In this Letter we propose that coherent radio emission of Crab, other young energetic pulsars, and millisecond pulsars is produced in the magnetospheric current sheet beyond the light cylinder. We carry out global and local two-dimensional kinetic pl asma simulations of reconnection to illustrate the coherent emission mechanism. Reconnection in the current sheet beyond the light cylinder proceeds in the very efficient plasmoid-dominated regime, and current layer gets fragmented into a dynamic chain of plasmoids which undergo successive coalescence. Mergers of sufficiently large plasmoids produce secondary perpendicular current sheets, which are also plasmoid-unstable. Collisions of plasmoids with each other and with the upstream magnetic field eject fast-magnetosonic waves, which propagate upstream across the background field and successfully escape from the plasma as electromagnetic waves that fall in the radio band. This model successfully explains many important features of the observed radio emission from Crab and other pulsars with high magnetic field at the light cylinder: phase coincidence with the high-energy emission, nano-second duration (nanoshots), and extreme instantaneous brightness of individual pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا