ﻻ يوجد ملخص باللغة العربية
We propose a new machine-learning approach for fiber-optic communication systems whose signal propagation is governed by the nonlinear Schrodinger equation (NLSE). Our main observation is that the popular split-step method (SSM) for numerically solving the NLSE has essentially the same functional form as a deep multi-layer neural network; in both cases, one alternates linear steps and pointwise nonlinearities. We exploit this connection by parameterizing the SSM and viewing the linear steps as general linear functions, similar to the weight matrices in a neural network. The resulting physics-based machine-learning model has several advantages over black-box function approximators. For example, it allows us to examine and interpret the learned solutions in order to understand why they perform well. As an application, low-complexity nonlinear equalization is considered, where the task is to efficiently invert the NLSE. This is commonly referred to as digital backpropagation (DBP). Rather than employing neural networks, the proposed algorithm, dubbed learned DBP (LDBP), uses the physics-based model with trainable filters in each step and its complexity is reduced by progressively pruning filter taps during gradient descent. Our main finding is that the filters can be pruned to remarkably short lengths-as few as 3 taps/step-without sacrificing performance. As a result, the complexity can be reduced by orders of magnitude in comparison to prior work. By inspecting the filter responses, an additional theoretical justification for the learned parameter configurations is provided. Our work illustrates that combining data-driven optimization with existing domain knowledge can generate new insights into old communications problems.
In this paper, an unsupervised machine learning method for geometric constellation shaping is investigated. By embedding a differentiable fiber channel model within two neural networks, the learning algorithm is optimizing for a geometric constellati
Sparse signal recovery problems from noisy linear measurements appear in many areas of wireless communications. In recent years, deep learning (DL) based approaches have attracted interests of researchers to solve the sparse linear inverse problem by
Huge overhead of beam training imposes a significant challenge in millimeter-wave (mmWave) wireless communications. To address this issue, in this paper, we propose a wide beam based training approach to calibrate the narrow beam direction according
The reconfigurable intelligent surface (RIS) is one of the promising technologies contributing to the next generation smart radio environment. A novel physics-based RIS channel model is proposed. Particularly, we consider the RIS and the scattering e
We use white Gaussian noise as a test signal for single-mode and multimode transmission links and estimate the link capacity based on a calculation of mutual information. We also extract the complex amplitude channel estimations and mode-dependent loss with high accuracy.