ترغب بنشر مسار تعليمي؟ اضغط هنا

A Comparison of Discrete Latent Variable Models for Speech Representation Learning

188   0   0.0 ( 0 )
 نشر من قبل Yuhao Zhou
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural latent variable models enable the discovery of interesting structure in speech audio data. This paper presents a comparison of two different approaches which are broadly based on predicting future time-steps or auto-encoding the input signal. Our study compares the representations learned by vq-vae and vq-wav2vec in terms of sub-word unit discovery and phoneme recognition performance. Results show that future time-step prediction with vq-wav2vec achieves better performance. The best system achieves an error rate of 13.22 on the ZeroSpeech 2019 ABX phoneme discrimination challenge

قيم البحث

اقرأ أيضاً

In this paper, we explore the use of a factorized hierarchical variational autoencoder (FHVAE) model to learn an unsupervised latent representation for dialect identification (DID). An FHVAE can learn a latent space that separates the more static att ributes within an utterance from the more dynamic attributes by encoding them into two different sets of latent variables. Useful factors for dialect identification, such as phonetic or linguistic content, are encoded by a segmental latent variable, while irrelevant factors that are relatively constant within a sequence, such as a channel or a speaker information, are encoded by a sequential latent variable. The disentanglement property makes the segmental latent variable less susceptible to channel and speaker variation, and thus reduces degradation from channel domain mismatch. We demonstrate that on fully-supervised DID tasks, an end-to-end model trained on the features extracted from the FHVAE model achieves the best performance, compared to the same model trained on conventional acoustic features and an i-vector based system. Moreover, we also show that the proposed approach can leverage a large amount of unlabeled data for FHVAE training to learn domain-invariant features for DID, and significantly improve the performance in a low-resource condition, where the labels for the in-domain data are not available.
Recently, end-to-end multi-speaker text-to-speech (TTS) systems gain success in the situation where a lot of high-quality speech plus their corresponding transcriptions are available. However, laborious paired data collection processes prevent many i nstitutes from building multi-speaker TTS systems of great performance. In this work, we propose a semi-supervised learning approach for multi-speaker TTS. A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation. The experiment results demonstrate that with only an hour of paired speech data, no matter the paired data is from multiple speakers or a single speaker, the proposed model can generate intelligible speech in different voices. We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy. In addition, our analysis reveals that different speaker characteristics of the paired data have an impact on the effectiveness of semi-supervised TTS.
Probabilistic Latent Variable Models (LVMs) provide an alternative to self-supervised learning approaches for linguistic representation learning from speech. LVMs admit an intuitive probabilistic interpretation where the latent structure shapes the i nformation extracted from the signal. Even though LVMs have recently seen a renewed interest due to the introduction of Variational Autoencoders (VAEs), their use for speech representation learning remains largely unexplored. In this work, we propose Convolutional Deep Markov Model (ConvDMM), a Gaussian state-space model with non-linear emission and transition functions modelled by deep neural networks. This unsupervised model is trained using black box variational inference. A deep convolutional neural network is used as an inference network for structured variational approximation. When trained on a large scale speech dataset (LibriSpeech), ConvDMM produces features that significantly outperform multiple self-supervised feature extracting methods on linear phone classification and recognition on the Wall Street Journal dataset. Furthermore, we found that ConvDMM complements self-supervised methods like Wav2Vec and PASE, improving on the results achieved with any of the methods alone. Lastly, we find that ConvDMM features enable learning better phone recognizers than any other features in an extreme low-resource regime with few labeled training examples.
End-to-end automatic speech recognition (ASR) models, including both attention-based models and the recurrent neural network transducer (RNN-T), have shown superior performance compared to conventional systems. However, previous studies have focused primarily on short utterances that typically last for just a few seconds or, at most, a few tens of seconds. Whether such architectures are practical on long utterances that last from minutes to hours remains an open question. In this paper, we both investigate and improve the performance of end-to-end models on long-form transcription. We first present an empirical comparison of different end-to-end models on a real world long-form task and demonstrate that the RNN-T model is much more robust than attention-based systems in this regime. We next explore two improvements to attention-based systems that significantly improve its performance: restricting the attention to be monotonic, and applying a novel decoding algorithm that breaks long utterances into shorter overlapping segments. Combining these two improvements, we show that attention-based end-to-end models can be very competitive to RNN-T on long-form speech recognition.
In this work, we learn a shared encoding representation for a multi-task neural network model optimized with connectionist temporal classification (CTC) and conventional framewise cross-entropy training criteria. Our experiments show that the multi-t ask training not only tackles the complexity of optimizing CTC models such as acoustic-to-word but also results in significant improvement compared to the plain-task training with an optimal setup. Furthermore, we propose to use the encoding representation learned by the multi-task network to initialize the encoder of attention-based models. Thereby, we train a deep attention-based end-to-end model with 10 long short-term memory (LSTM) layers of encoder which produces 12.2% and 22.6% word-error-rate on Switchboard and CallHome subsets of the Hub5 2000 evaluation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا