ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparison of end-to-end models for long-form speech recognition

80   0   0.0 ( 0 )
 نشر من قبل Chung-Cheng Chiu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end automatic speech recognition (ASR) models, including both attention-based models and the recurrent neural network transducer (RNN-T), have shown superior performance compared to conventional systems. However, previous studies have focused primarily on short utterances that typically last for just a few seconds or, at most, a few tens of seconds. Whether such architectures are practical on long utterances that last from minutes to hours remains an open question. In this paper, we both investigate and improve the performance of end-to-end models on long-form transcription. We first present an empirical comparison of different end-to-end models on a real world long-form task and demonstrate that the RNN-T model is much more robust than attention-based systems in this regime. We next explore two improvements to attention-based systems that significantly improve its performance: restricting the attention to be monotonic, and applying a novel decoding algorithm that breaks long utterances into shorter overlapping segments. Combining these two improvements, we show that attention-based end-to-end models can be very competitive to RNN-T on long-form speech recognition.



قيم البحث

اقرأ أيضاً

111 - Qiujia Li , Yu Zhang , Bo Li 2021
End-to-end models with auto-regressive decoders have shown impressive results for automatic speech recognition (ASR). These models formulate the sequence-level probability as a product of the conditional probabilities of all individual tokens given t heir histories. However, the performance of locally normalised models can be sub-optimal because of factors such as exposure bias. Consequently, the model distribution differs from the underlying data distribution. In this paper, the residual energy-based model (R-EBM) is proposed to complement the auto-regressive ASR model to close the gap between the two distributions. Meanwhile, R-EBMs can also be regarded as utterance-level confidence estimators, which may benefit many downstream tasks. Experiments on a 100hr LibriSpeech dataset show that R-EBMs can reduce the word error rates (WERs) by 8.2%/6.7% while improving areas under precision-recall curves of confidence scores by 12.6%/28.4% on test-clean/test-other sets. Furthermore, on a state-of-the-art model using self-supervised learning (wav2vec 2.0), R-EBMs still significantly improves both the WER and confidence estimation performance.
Transcription or sub-titling of open-domain videos is still a challenging domain for Automatic Speech Recognition (ASR) due to the datas challenging acoustics, variable signal processing and the essentially unrestricted domain of the data. In previou s work, we have shown that the visual channel -- specifically object and scene features -- can help to adapt the acoustic model (AM) and language model (LM) of a recognizer, and we are now expanding this work to end-to-end approaches. In the case of a Connectionist Temporal Classification (CTC)-based approach, we retain the separation of AM and LM, while for a sequence-to-sequence (S2S) approach, both information sources are adapted together, in a single model. This paper also analyzes the behavior of CTC and S2S models on noisy video data (How-To corpus), and compares it to results on the clean Wall Street Journal (WSJ) corpus, providing insight into the robustness of both approaches.
Practitioners often need to build ASR systems for new use cases in a short amount of time, given limited in-domain data. While recently developed end-to-end methods largely simplify the modeling pipelines, they still suffer from the data sparsity iss ue. In this work, we explore a few simple-to-implement techniques for building online ASR systems in an end-to-end fashion, with a small amount of transcribed data in the target domain. These techniques include data augmentation in the target domain, domain adaptation using models previously trained on a large source domain, and knowledge distillation on non-transcribed target domain data, using an adapted bi-directional model as the teacher; they are applicable in real scenarios with different types of resources. Our experiments demonstrate that each technique is independently useful in the improvement of the online ASR performance in the target domain.
Attention-based methods and Connectionist Temporal Classification (CTC) network have been promising research directions for end-to-end (E2E) Automatic Speech Recognition (ASR). The joint CTC/Attention model has achieved great success by utilizing bot h architectures during multi-task training and joint decoding. In this work, we present a multi-stream framework based on joint CTC/Attention E2E ASR with parallel streams represented by separate encoders aiming to capture diverse information. On top of the regular attention networks, the Hierarchical Attention Network (HAN) is introduced to steer the decoder toward the most informative encoders. A separate CTC network is assigned to each stream to force monotonic alignments. Two representative framework have been proposed and discussed, which are Multi-Encoder Multi-Resolution (MEM-Res) framework and Multi-Encoder Multi-Array (MEM-Array) framework, respectively. In MEM-Res framework, two heterogeneous encoders with different architectures, temporal resolutions and separate CTC networks work in parallel to extract complimentary information from same acoustics. Experiments are conducted on Wall Street Journal (WSJ) and CHiME-4, resulting in relative Word Error Rate (WER) reduction of 18.0-32.1% and the best WER of 3.6% in the WSJ eval92 test set. The MEM-Array framework aims at improving the far-field ASR robustness using multiple microphone arrays which are activated by separate encoders. Compared with the best single-array results, the proposed framework has achieved relative WER reduction of 3.7% and 9.7% in AMI and DIRHA multi-array corpora, respectively, which also outperforms conventional fusion strategies.
The external language models (LM) integration remains a challenging task for end-to-end (E2E) automatic speech recognition (ASR) which has no clear division between acoustic and language models. In this work, we propose an internal LM estimation (ILM E) method to facilitate a more effective integration of the external LM with all pre-existing E2E models with no additional model training, including the most popular recurrent neural network transducer (RNN-T) and attention-based encoder-decoder (AED) models. Trained with audio-transcript pairs, an E2E model implicitly learns an internal LM that characterizes the training data in the source domain. With ILME, the internal LM scores of an E2E model are estimated and subtracted from the log-linear interpolation between the scores of the E2E model and the external LM. The internal LM scores are approximated as the output of an E2E model when eliminating its acoustic components. ILME can alleviate the domain mismatch between training and testing, or improve the multi-domain E2E ASR. Experimented with 30K-hour trained RNN-T and AED models, ILME achieves up to 15.5% and 6.8% relative word error rate reductions from Shallow Fusion on out-of-domain LibriSpeech and in-domain Microsoft production test sets, respectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا