ترغب بنشر مسار تعليمي؟ اضغط هنا

$L^{p}$ and $mathcal{H}^{p}_{FIO}$ regularity for wave equations with rough coefficients, Part I

82   0   0.0 ( 0 )
 نشر من قبل Jan Rozendaal
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider wave equations with time-independent coefficients that have $C^{1,1}$ regularity in space. We show that, for nontrivial ranges of $p$ and $s$, the standard inhomogeneous initial value problem for the wave equation is well posed in Sobolev spaces $mathcal{H}^{s,p}_{FIO}(mathbb{R}^{n})$ over the Hardy spaces $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$ for Fourier integral operators introduced recently by the authors and Portal, following work of Smith. In spatial dimensions $n = 2$ and $n=3$, this includes the full range $1 < p < infty$. As a corollary, we obtain the optimal fixed-time $L^{p}$ regularity for such equations, generalizing work of Seeger, Sogge and Stein in the case of smooth coefficients.

قيم البحث

اقرأ أيضاً

Multifractal analysis aims to characterize signals, functions, images or fields, via the fluctuations of their local regularity along time or space, hence capturing crucial features of their temporal/spatial dynamics. Multifractal analysis is becomin g a standard tool in signal and image processing, and is nowadays widely used in numerous applications of different natures. Its common formulation relies on the measure of local regularity via the Holder exponent, by nature restricted to positive values, and thus to locally bounded functions or signals. It is here proposed to base the quantification of local regularity on $p$-exponents, a novel local regularity measure potentially taking negative values. First, the theoretical properties of $p$-exponents are studied in detail. Second, wavelet-based multiscale quantities, the $p$-leaders, are constructed and shown to permit accurate practical estimation of $p$-exponents. Exploiting the potential dependence with $p$, it is also shown how the collection of $p$-exponents enriches the classification of locally singular behaviors in functions, signals or images. The present contribution is complemented by a companion article developing the $p$-leader based multifractal formalism associated to $p$-exponents.
106 - Yuzhe Zhu 2020
This article addresses the local boundedness and Holder continuity of weak solutions to kinetic Fokker-Planck equations with general transport operators and rough coefficients. These results are due to the mixing effect of diffusion and transport. Al though the equation is parabolic only in the velocity variable, it has a hypoelliptic structure provided that the transport part $partial_t+b(v)cdot abla_x$ is nondegenerate in some sense. We achieve the results by revisiting the method, proposed by Golse, Imbert, Mouhot and Vasseur in the case $b(v)= v$, that combines the elliptic De Giorgi-Nash-Moser theory with velocity averaging lemmas.
181 - Hongjie Dong , Tuoc Phan 2018
In this paper, we study parabolic equations in divergence form with coefficients that are singular degenerate as some Muckenhoupt weight functions in one spatial variable. Under certain conditions, weighted reverse H{o}lders inequalities are establis hed. Lipschitz estimates for weak solutions are proved for homogeneous equations with singular degenerate coefficients depending only on one spatial variable. These estimates are then used to establish interior, boundary, and global weighted estimates of Calder{o}n-Zygmund type for weak solutions, assuming that the coefficients are partially VMO (vanishing mean oscillations) with respect to the considered weights. The solvability in weighted Sobolev spaces is also achieved. Our results are new even for elliptic equations, and non-trivially extend known results for uniformly elliptic and parabolic equations. The results are also useful in the study of fractional elliptic and parabolic equations with measurable coefficients.
We consider a class of vector-valued elliptic operators with unbounded coefficients, coupled up to the first-order, in the Lebesgue space L^p(R^d;R^m) with p in (1,infty). Sufficient conditions to prove generation results of an analytic C_0-semigroup T(t), together with a characterization of the domain of its generator, are given. Some results related to the hypercontractivity and the ultraboundedness of the semigroup are also established.
The Hardy spaces for Fourier integral operators $mathcal{H}_{FIO}^{p}(mathbb{R}^{n})$, for $1leq pleq infty$, were introduced by Smith in cite{Smith98a} and Hassell et al. in cite{HaPoRo18}. In this article, we give several equivalent characterizatio ns of $mathcal{H}_{FIO}^{1}(mathbb{R}^{n})$, for example in terms of Littlewood--Paley g functions and maximal functions. This answers a question from [Rozendaal,2019]. We also give several applications of the characterizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا