ﻻ يوجد ملخص باللغة العربية
Multifractal analysis aims to characterize signals, functions, images or fields, via the fluctuations of their local regularity along time or space, hence capturing crucial features of their temporal/spatial dynamics. Multifractal analysis is becoming a standard tool in signal and image processing, and is nowadays widely used in numerous applications of different natures. Its common formulation relies on the measure of local regularity via the Holder exponent, by nature restricted to positive values, and thus to locally bounded functions or signals. It is here proposed to base the quantification of local regularity on $p$-exponents, a novel local regularity measure potentially taking negative values. First, the theoretical properties of $p$-exponents are studied in detail. Second, wavelet-based multiscale quantities, the $p$-leaders, are constructed and shown to permit accurate practical estimation of $p$-exponents. Exploiting the potential dependence with $p$, it is also shown how the collection of $p$-exponents enriches the classification of locally singular behaviors in functions, signals or images. The present contribution is complemented by a companion article developing the $p$-leader based multifractal formalism associated to $p$-exponents.
Multifractal analysis studies signals, functions, images or fields via the fluctuations of their local regularity along time or space, which capture crucial features of their temporal/spatial dynamics. It has become a standard signal and image proces
We consider wave equations with time-independent coefficients that have $C^{1,1}$ regularity in space. We show that, for nontrivial ranges of $p$ and $s$, the standard inhomogeneous initial value problem for the wave equation is well posed in Sobolev
We study $p$-adic multiresolution analyses (MRAs). A complete characterisation of test functions generating MRAs (scaling functions) is given. We prove that only 1-periodic test functions may be taken as orthogonal scaling functions. We also suggest
Recently, various extensions and variants of Bessel functions of several kinds have been presented. Among them, the $(p,q)$-confluent hypergeometric function $Phi_{p,q}$ has been introduced and investigated. Here, we aim to introduce an extended $(p,
In this study our aim to define the extended $(p,q)$-Mittag-Leffler(ML) function by using extension of beta functions and to obtain the integral representation of new function. We also take the Mellin transform of this new function in terms of Wright