ترغب بنشر مسار تعليمي؟ اضغط هنا

An Intuitionistic Set-theoretical Model of Fully Dependent CC{omega}

66   0   0.0 ( 0 )
 نشر من قبل Masahiro Sato
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Werners set-theoretical model is one of the simplest models of CIC. It combines a functional view of predicative universes with a collapsed view of the impredicative sort Prop. However this model of Prop is so coarse that the principle of excluded middle holds. Following our previous work, we interpret Prop into a topological space (a special case of Heyting algebra) to make the model more intuitionistic without sacrificing simplicity. We improve on that work by providing a full interpretation of dependent product types, using Alexandroff spaces. We also extend our approach to inductive types by adding support for lists.

قيم البحث

اقرأ أيضاً

72 - Olivier Finkel 2008
Omega-powers of finitary languages are omega languages in the form V^omega, where V is a finitary language over a finite alphabet X. Since the set of infinite words over X can be equipped with the usual Cantor topology, the question of the topologica l complexity of omega-powers naturally arises and has been raised by Niwinski, by Simonnet, and by Staiger. It has been recently proved that for each integer n > 0, there exist some omega-powers of context free languages which are Pi^0_n-complete Borel sets, and that there exists a context free language L such that L^omega is analytic but not Borel. But the question was still open whether there exists a finitary language V such that V^omega is a Borel set of infinite rank. We answer this question in this paper, giving an example of a finitary language whose omega-power is Borel of infinite rank.
259 - Olivier Finkel 2020
The $omega$-power of a finitary language L over a finite alphabet $Sigma$ is the language of infinite words over $Sigma$ defined by L $infty$ := {w 0 w 1. .. $in$ $Sigma$ $omega$ | $forall$i $in$ $omega$ w i $in$ L}. The $omega$-powers appear very na turally in Theoretical Computer Science in the characterization of several classes of languages of infinite words accepted by various kinds of automata, like B{u}chi automata or B{u}chi pushdown automata. We survey some recent results about the links relating Descriptive Set Theory and $omega$-powers.
We define a family of intuitionistic non-normal modal logics; they can bee seen as intuitionistic counterparts of classical ones. We first consider monomodal logics, which contain only one between Necessity and Possibility. We then consider the more important case of bimodal logics, which contain both modal operators. In this case we define several interactions between Necessity and Possibility of increasing strength, although weaker than duality. For all logics we provide both a Hilbert axiomatisation and a cut-free sequent calculus, on its basis we also prove their decidability. We then give a semantic characterisation of our logics in terms of neighbourhood models. Our semantic framework captures modularly not only our systems but also already known intuitionistic non-normal modal logics such as Constructive K (CK) and the propositional fragment of Wijesekeras Constructive Concurrent Dynamic Logic.
111 - Olivier Finkel 2008
Locally finite omega languages were introduced by Ressayre in [Journal of Symbolic Logic, Volume 53, No. 4, p.1009-1026]. They generalize omega languages accepted by finite automata or defined by monadic second order sentences. We study here closure properties of the family LOC_omega of locally finite omega languages. In particular we show that the class LOC_omega is neither closed under intersection nor under complementation, giving an answer to a question of Ressayre.
173 - Olivier Finkel 2017
We prove that $omega$-languages of (non-deterministic) Petri nets and $omega$-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of $omega$-languages of (non-determinist ic) Petri nets are equal to the Borel and Wadge hierarchies of the class of $omega$-languages of (non-deterministic) Turing machines which also form the class of effective analytic sets. In particular, for each non-null recursive ordinal $alpha < omega_1^{{rm CK}} $ there exist some ${bf Sigma}^0_alpha$-complete and some ${bf Pi}^0_alpha$-complete $omega$-languages of Petri nets, and the supremum of the set of Borel ranks of $omega$-languages of Petri nets is the ordinal $gamma_2^1$, which is strictly greater than the first non-recursive ordinal $omega_1^{{rm CK}}$. We also prove that there are some ${bf Sigma}_1^1$-complete, hence non-Borel, $omega$-languages of Petri nets, and that it is consistent with ZFC that there exist some $omega$-languages of Petri nets which are neither Borel nor ${bf Sigma}_1^1$-complete. This answers the question of the topological complexity of $omega$-languages of (non-deterministic) Petri nets which was left open in [DFR14,FS14].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا