ﻻ يوجد ملخص باللغة العربية
We define a family of intuitionistic non-normal modal logics; they can bee seen as intuitionistic counterparts of classical ones. We first consider monomodal logics, which contain only one between Necessity and Possibility. We then consider the more important case of bimodal logics, which contain both modal operators. In this case we define several interactions between Necessity and Possibility of increasing strength, although weaker than duality. For all logics we provide both a Hilbert axiomatisation and a cut-free sequent calculus, on its basis we also prove their decidability. We then give a semantic characterisation of our logics in terms of neighbourhood models. Our semantic framework captures modularly not only our systems but also already known intuitionistic non-normal modal logics such as Constructive K (CK) and the propositional fragment of Wijesekeras Constructive Concurrent Dynamic Logic.
This paper exhibits a general and uniform method to prove completeness for certain modal fixpoint logics. Given a set Gamma of modal formulas of the form gamma(x, p1, . . ., pn), where x occurs only positively in gamma, the language Lsharp (Gamma) is
Open bisimilarity is defined for open process terms in which free variables may appear. The insight is, in order to characterise open bisimilarity, we move to the setting of intuitionistic modal logics. The intuitionistic modal logic introduced, call
Werners set-theoretical model is one of the simplest models of CIC. It combines a functional view of predicative universes with a collapsed view of the impredicative sort Prop. However this model of Prop is so coarse that the principle of excluded mi
In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a
We show that the set of absolutely normal numbers is $mathbf Pi^0_3$-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is $Pi^0_3$-complete in the effective Borel hierarchy.