ترغب بنشر مسار تعليمي؟ اضغط هنا

Intuitionistic Non-Normal Modal Logics: A general framework

74   0   0.0 ( 0 )
 نشر من قبل Tiziano Dalmonte
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We define a family of intuitionistic non-normal modal logics; they can bee seen as intuitionistic counterparts of classical ones. We first consider monomodal logics, which contain only one between Necessity and Possibility. We then consider the more important case of bimodal logics, which contain both modal operators. In this case we define several interactions between Necessity and Possibility of increasing strength, although weaker than duality. For all logics we provide both a Hilbert axiomatisation and a cut-free sequent calculus, on its basis we also prove their decidability. We then give a semantic characterisation of our logics in terms of neighbourhood models. Our semantic framework captures modularly not only our systems but also already known intuitionistic non-normal modal logics such as Constructive K (CK) and the propositional fragment of Wijesekeras Constructive Concurrent Dynamic Logic.



قيم البحث

اقرأ أيضاً

185 - Luigi Santocanale 2008
This paper exhibits a general and uniform method to prove completeness for certain modal fixpoint logics. Given a set Gamma of modal formulas of the form gamma(x, p1, . . ., pn), where x occurs only positively in gamma, the language Lsharp (Gamma) is obtained by adding to the language of polymodal logic a connective sharp_gamma for each gamma epsilon. The term sharp_gamma (varphi1, . . ., varphin) is meant to be interpreted as the least fixed point of the functional interpretation of the term gamma(x, varphi 1, . . ., varphi n). We consider the following problem: given Gamma, construct an axiom system which is sound and complete with respect to the concrete interpretation of the language Lsharp (Gamma) on Kripke frames. We prove two results that solve this problem. First, let Ksharp (Gamma) be the logic obtained from the basic polymodal K by adding a Kozen-Park style fixpoint axiom and a least fixpoint rule, for each fixpoint connective sharp_gamma. Provided that each indexing formula gamma satisfies the syntactic criterion of being untied in x, we prove this axiom system to be complete. Second, addressing the general case, we prove the soundness and completeness of an extension K+ (Gamma) of K_sharp (Gamma). This extension is obtained via an effective procedure that, given an indexing formula gamma as input, returns a finite set of axioms and derivation rules for sharp_gamma, of size bounded by the length of gamma. Thus the axiom system K+ (Gamma) is finite whenever Gamma is finite.
Open bisimilarity is defined for open process terms in which free variables may appear. The insight is, in order to characterise open bisimilarity, we move to the setting of intuitionistic modal logics. The intuitionistic modal logic introduced, call ed $mathcal{OM}$, is such that modalities are closed under substitutions, which induces a property known as intuitionistic hereditary. Intuitionistic hereditary reflects in logic the lazy instantiation of free variables performed when checking open bisimilarity. The soundness proof for open bisimilarity with respect to our intuitionistic modal logic is mechanised in Abella. The constructive content of the completeness proof provides an algorithm for generating distinguishing formulae, which we have implemented. We draw attention to the fact that there is a spectrum of bisimilarity congruences that can be characterised by intuitionistic modal logics.
Werners set-theoretical model is one of the simplest models of CIC. It combines a functional view of predicative universes with a collapsed view of the impredicative sort Prop. However this model of Prop is so coarse that the principle of excluded mi ddle holds. Following our previous work, we interpret Prop into a topological space (a special case of Heyting algebra) to make the model more intuitionistic without sacrificing simplicity. We improve on that work by providing a full interpretation of dependent product types, using Alexandroff spaces. We also extend our approach to inductive types by adding support for lists.
In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a linear fragment (arena net) and a parallel weakening-contraction fragment (skew fibration). In particular we provide an encoding of modal formulas by means of directed graphs (modal arenas), and an encoding of linear proofs as modal arenas equipped with vertex partitions satisfying topological criteria. The second semantics is given by means of winning innocent strategies of a two-player game over modal arenas. This is given by extending the Heijltjes-Hughes-Stra{ss}burger correspondence between intuitionistic combinatorial proofs and winning innocent strategies in a Hyland-Ong arena. Using our first result, we provide a characterisation of winning strategies for games on a modal arena corresponding to proofs with modalities.
We show that the set of absolutely normal numbers is $mathbf Pi^0_3$-complete in the Borel hierarchy of subsets of real numbers. Similarly, the set of absolutely normal numbers is $Pi^0_3$-complete in the effective Borel hierarchy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا