ﻻ يوجد ملخص باللغة العربية
We prove that $omega$-languages of (non-deterministic) Petri nets and $omega$-languages of (non-deterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of $omega$-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of $omega$-languages of (non-deterministic) Turing machines which also form the class of effective analytic sets. In particular, for each non-null recursive ordinal $alpha < omega_1^{{rm CK}} $ there exist some ${bf Sigma}^0_alpha$-complete and some ${bf Pi}^0_alpha$-complete $omega$-languages of Petri nets, and the supremum of the set of Borel ranks of $omega$-languages of Petri nets is the ordinal $gamma_2^1$, which is strictly greater than the first non-recursive ordinal $omega_1^{{rm CK}}$. We also prove that there are some ${bf Sigma}_1^1$-complete, hence non-Borel, $omega$-languages of Petri nets, and that it is consistent with ZFC that there exist some $omega$-languages of Petri nets which are neither Borel nor ${bf Sigma}_1^1$-complete. This answers the question of the topological complexity of $omega$-languages of (non-deterministic) Petri nets which was left open in [DFR14,FS14].
We show that, from a topological point of view, considering the Borel and the Wadge hierarchies, 1-counter Buchi automata have the same accepting power than Turing machines equipped with a Buchi acceptance condition. In particular, for every non null
We show that there are $Sigma_3^0$-complete languages of infinite words accepted by non-deterministic Petri nets with Buchi acceptance condition, or equivalently by Buchi blind counter automata. This shows that omega-languages accepted by non-determi
Locally finite omega languages were introduced by Ressayre in [Journal of Symbolic Logic, Volume 53, No. 4, p.1009-1026]. They generalize omega languages accepted by finite automata or defined by monadic second order sentences. We study here closure
We prove in this paper that the length of the Wadge hierarchy of omega context free languages is greater than the Cantor ordinal epsilon_omega, which is the omega-th fixed point of the ordinal exponentiation of base omega. The same result holds for t
The $omega$-power of a finitary language L over a finite alphabet $Sigma$ is the language of infinite words over $Sigma$ defined by L $infty$ := {w 0 w 1. .. $in$ $Sigma$ $omega$ | $forall$i $in$ $omega$ w i $in$ L}. The $omega$-powers appear very na