ترغب بنشر مسار تعليمي؟ اضغط هنا

Importance-Aware Semantic Segmentation in Self-Driving with Discrete Wasserstein Training

130   0   0.0 ( 0 )
 نشر من قبل Xiaofeng Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semantic segmentation (SS) is an important perception manner for self-driving cars and robotics, which classifies each pixel into a pre-determined class. The widely-used cross entropy (CE) loss-based deep networks has achieved significant progress w.r.t. the mean Intersection-over Union (mIoU). However, the cross entropy loss can not take the different importance of each class in an self-driving system into account. For example, pedestrians in the image should be much more important than the surrounding buildings when make a decisions in the driving, so their segmentation results are expected to be as accurate as possible. In this paper, we propose to incorporate the importance-aware inter-class correlation in a Wasserstein training framework by configuring its ground distance matrix. The ground distance matrix can be pre-defined following a priori in a specific task, and the previous importance-ignored methods can be the particular cases. From an optimization perspective, we also extend our ground metric to a linear, convex or concave increasing function $w.r.t.$ pre-defined ground distance. We evaluate our method on CamVid and Cityscapes datasets with different backbones (SegNet, ENet, FCN and Deeplab) in a plug and play fashion. In our extenssive experiments, Wasserstein loss demonstrates superior segmentation performance on the predefined critical classes for safe-driving.



قيم البحث

اقرأ أيضاً

Semantic segmentation is important for many real-world systems, e.g., autonomous vehicles, which predict the class of each pixel. Recently, deep networks achieved significant progress w.r.t. the mean Intersection-over Union (mIoU) with the cross-entr opy loss. However, the cross-entropy loss can essentially ignore the difference of severity for an autonomous car with different wrong prediction mistakes. For example, predicting the car to the road is much more servery than recognize it as the bus. Targeting for this difficulty, we develop a Wasserstein training framework to explore the inter-class correlation by defining its ground metric as misclassification severity. The ground metric of Wasserstein distance can be pre-defined following the experience on a specific task. From the optimization perspective, we further propose to set the ground metric as an increasing function of the pre-defined ground metric. Furthermore, an adaptively learning scheme of the ground matrix is proposed to utilize the high-fidelity CARLA simulator. Specifically, we follow a reinforcement alternative learning scheme. The experiments on both CamVid and Cityscapes datasets evidenced the effectiveness of our Wasserstein loss. The SegNet, ENet, FCN and Deeplab networks can be adapted following a plug-in manner. We achieve significant improvements on the predefined important classes, and much longer continuous playtime in our simulator.
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation. However, these approaches heavily rely on annotated data which are labor intensive. To cope with this limitation, automatically annotated data g enerated from graphic engines are used to train segmentation models. However, the models trained from synthetic data are difficult to transfer to real images. To tackle this issue, previous works have considered directly adapting models from the source data to the unlabeled target data (to reduce the inter-domain gap). Nonetheless, these techniques do not consider the large distribution gap among the target data itself (intra-domain gap). In this work, we propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together. First, we conduct the inter-domain adaptation of the model; from this adaptation, we separate the target domain into an easy and hard split using an entropy-based ranking function. Finally, to decrease the intra-domain gap, we propose to employ a self-supervised adaptation technique from the easy to the hard split. Experimental results on numerous benchmark datasets highlight the effectiveness of our method against existing state-of-the-art approaches. The source code is available at https://github.com/feipan664/IntraDA.git.
Within the context of autonomous driving, safety-related metrics for deep neural networks have been widely studied for image classification and object detection. In this paper, we further consider safety-aware correctness and robustness metrics speci alized for semantic segmentation. The novelty of our proposal is to move beyond pixel-level metrics: Given two images with each having N pixels being class-flipped, the designed metrics should, depending on the clustering of pixels being class-flipped or the location of occurrence, reflect a different level of safety criticality. The result evaluated on an autonomous driving dataset demonstrates the validity and practicality of our proposed methodology.
Most modern approaches for domain adaptive semantic segmentation rely on continued access to source data during adaptation, which may be infeasible due to computational or privacy constraints. We focus on source-free domain adaptation for semantic se gmentation, wherein a source model must adapt itself to a new target domain given only unlabeled target data. We propose Self-Supervised Selective Self-Training (S4T), a source-free adaptation algorithm that first uses the models pixel-level predictive consistency across diverse views of each target image along with model confidence to classify pixel predictions as either reliable or unreliable. Next, the model is self-trained, using predicted pseudolabels for reliable predictions and pseudolabels inferred via a selective interpolation strategy for unreliable ones. S4T matches or improves upon the state-of-the-art in source-free adaptation on 3 standard benchmarks for semantic segmentation within a single epoch of adaptation.
Fisheye cameras are commonly used in applications like autonomous driving and surveillance to provide a large field of view ($>180^{circ}$). However, they come at the cost of strong non-linear distortions which require more complex algorithms. In thi s paper, we explore Euclidean distance estimation on fisheye cameras for automotive scenes. Obtaining accurate and dense depth supervision is difficult in practice, but self-supervised learning approaches show promising results and could potentially overcome the problem. We present a novel self-supervised scale-aware framework for learning Euclidean distance and ego-motion from raw monocular fisheye videos without applying rectification. While it is possible to perform piece-wise linear approximation of fisheye projection surface and apply standard rectilinear models, it has its own set of issues like re-sampling distortion and discontinuities in transition regions. To encourage further research in this area, we will release our dataset as part of the WoodScape project cite{yogamani2019woodscape}. We further evaluated the proposed algorithm on the KITTI dataset and obtained state-of-the-art results comparable to other self-supervised monocular methods. Qualitative results on an unseen fisheye video demonstrate impressive performance https://youtu.be/Sgq1WzoOmXg.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا