ترغب بنشر مسار تعليمي؟ اضغط هنا

Curriculum Pre-Training Heterogeneous Subgraph Transformer for Top-$N$ Recommendation

142   0   0.0 ( 0 )
 نشر من قبل Kun Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the flexibility in modelling data heterogeneity, heterogeneous information network (HIN) has been adopted to characterize complex and heterogeneous auxiliary data in top-$N$ recommender systems, called emph{HIN-based recommendation}. HIN characterizes complex, heterogeneous data relations, containing a variety of information that may not be related to the recommendation task. Therefore, it is challenging to effectively leverage useful information from HINs for improving the recommendation performance. To address the above issue, we propose a Curriculum pre-training based HEterogeneous Subgraph Transformer (called emph{CHEST}) with new emph{data characterization}, emph{representation model} and emph{learning algorithm}. Specifically, we consider extracting useful information from HIN to compose the interaction-specific heterogeneous subgraph, containing both sufficient and relevant context information for recommendation. Then we capture the rich semantics (eg graph structure and path semantics) within the subgraph via a heterogeneous subgraph Transformer, where we encode the subgraph with multi-slot sequence representations. Besides, we design a curriculum pre-training strategy to provide an elementary-to-advanced learning process, by which we smoothly transfer basic semantics in HIN for modeling user-item interaction relation. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed method over a number of competitive baselines, especially when only limited training data is available.

قيم البحث

اقرأ أيضاً

150 - Yong Liu , Susen Yang , Chenyi Lei 2020
Side information of items, e.g., images and text description, has shown to be effective in contributing to accurate recommendations. Inspired by the recent success of pre-training models on natural language and images, we propose a pre-training strat egy to learn item representations by considering both item side information and their relationships. We relate items by common user activities, e.g., co-purchase, and construct a homogeneous item graph. This graph provides a unified view of item relations and their associated side information in multimodality. We develop a novel sampling algorithm named MCNSampling to select contextual neighbors for each item. The proposed Pre-trained Multimodal Graph Transformer (PMGT) learns item representations with two objectives: 1) graph structure reconstruction, and 2) masked node feature reconstruction. Experimental results on real datasets demonstrate that the proposed PMGT model effectively exploits the multimodality side information to achieve better accuracies in downstream tasks including item recommendation, item classification, and click-through ratio prediction. We also report a case study of testing the proposed PMGT model in an online setting with 600 thousand users.
133 - Zhiwei Liu , Ziwei Fan , Yu Wang 2021
Sequential Recommendation characterizes the evolving patterns by modeling item sequences chronologically. The essential target of it is to capture the item transition correlations. The recent developments of transformer inspire the community to desig n effective sequence encoders, textit{e.g.,} SASRec and BERT4Rec. However, we observe that these transformer-based models suffer from the cold-start issue, textit{i.e.,} performing poorly for short sequences. Therefore, we propose to augment short sequences while still preserving original sequential correlations. We introduce a new framework for textbf{A}ugmenting textbf{S}equential textbf{Re}commendation with textbf{P}seudo-prior items~(ASReP). We firstly pre-train a transformer with sequences in a reverse direction to predict prior items. Then, we use this transformer to generate fabricated historical items at the beginning of short sequences. Finally, we fine-tune the transformer using these augmented sequences from the time order to predict the next item. Experiments on two real-world datasets verify the effectiveness of ASReP. The code is available on url{https://github.com/DyGRec/ASReP}.
Next basket recommendation, which aims to predict the next a few items that a user most probably purchases given his historical transactions, plays a vital role in market basket analysis. From the viewpoint of item, an item could be purchased by diff erent users together with different items, for different reasons. Therefore, an ideal recommender system should represent an item considering its transaction contexts. Existing state-of-the-art deep learning methods usually adopt the static item representations, which are invariant among all of the transactions and thus cannot achieve the full potentials of deep learning. Inspired by the pre-trained representations of BERT in natural language processing, we propose to conduct context-aware item representation for next basket recommendation, called Item Encoder Representations from Transformers (IERT). In the offline phase, IERT pre-trains deep item representations conditioning on their transaction contexts. In the online recommendation phase, the pre-trained model is further fine-tuned with an additional output layer. The output contextualized item embeddings are used to capture users sequential behaviors and general tastes to conduct recommendation. Experimental results on the Ta-Feng data set show that IERT outperforms the state-of-the-art baseline methods, which demonstrated the effectiveness of IERT in next basket representation.
Recommender systems aim to provide item recommendations for users, and are usually faced with data sparsity problem (e.g., cold start) in real-world scenarios. Recently pre-trained models have shown their effectiveness in knowledge transfer between d omains and tasks, which can potentially alleviate the data sparsity problem in recommender systems. In this survey, we first provide a review of recommender systems with pre-training. In addition, we show the benefits of pre-training to recommender systems through experiments. Finally, we discuss several promising directions for future research for recommender systems with pre-training.
168 - Lei Li , Yongfeng Zhang , Li Chen 2021
Personalization of natural language generation plays a vital role in a large spectrum of tasks, such as explainable recommendation, review summarization and dialog systems. In these tasks, user and item IDs are important identifiers for personalizati on. Transformer, which is demonstrated with strong language modeling capability, however, is not personalized and fails to make use of the user and item IDs since the ID tokens are not even in the same semantic space as the words. To address this problem, we present a PErsonalized Transformer for Explainable Recommendation (PETER), on which we design a simple and effective learning objective that utilizes the IDs to predict the words in the target explanation, so as to endow the IDs with linguistic meanings and to achieve personalized Transformer. Besides generating explanations, PETER can also make recommendations, which makes it a unified model for the whole recommendation-explanation pipeline. Extensive experiments show that our small unpretrained model outperforms fine-tuned BERT on the generation task, in terms of both effectiveness and efficiency, which highlights the importance and the nice utility of our design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا