ترغب بنشر مسار تعليمي؟ اضغط هنا

Lamina-specific neuronal properties promote robust, stable signal propagation in feedforward networks

304   0   0.0 ( 0 )
 نشر من قبل Dongqi Han
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Feedforward networks (FFN) are ubiquitous structures in neural systems and have been studied to understand mechanisms of reliable signal and information transmission. In many FFNs, neurons in one layer have intrinsic properties that are distinct from those in their pre-/postsynaptic layers, but how this affects network-level information processing remains unexplored. Here we show that layer-to-layer heterogeneity arising from lamina-specific cellular properties facilitates signal and information transmission in FFNs. Specifically, we found that signal transformations, made by each layer of neurons on an input-driven spike signal, demodulate signal distortions introduced by preceding layers. This mechanism boosts information transfer carried by a propagating spike signal and thereby supports reliable spike signal and information transmission in a deep FFN. Our study suggests that distinct cell types in neural circuits, performing different computational functions, facilitate information processing on the whole.



قيم البحث

اقرأ أيضاً

Networks of excitatory and inhibitory neurons display asynchronous irregular (AI) states, where the activities of the two populations are balanced. At the single cell level, it was shown that neurons subject to balanced and noisy synaptic inputs can display enhanced responsiveness. We show here that this enhanced responsiveness is also present at the network level, but only when single neurons are in a conductance state and fluctuation regime consistent with experimental measurements. In such states, the entire population of neurons is globally influenced by the external input. We suggest that this network-level enhanced responsiveness constitute a low-level form of sensory awareness.
The abundant recurrent horizontal and feedback connections in the primate visual cortex are thought to play an important role in bringing global and semantic contextual information to early visual areas during perceptual inference, helping to resolve local ambiguity and fill in missing details. In this study, we find that introducing feedback loops and horizontal recurrent connections to a deep convolution neural network (VGG16) allows the network to become more robust against noise and occlusion during inference, even in the initial feedforward pass. This suggests that recurrent feedback and contextual modulation transform the feedforward representations of the network in a meaningful and interesting way. We study the population codes of neurons in the network, before and after learning with feedback, and find that learning with feedback yielded an increase in discriminability (measured by d-prime) between the different object classes in the population codes of the neurons in the feedforward path, even at the earliest layer that receives feedback. We find that recurrent feedback, by injecting top-down semantic meaning to the population activities, helps the network learn better feedforward paths to robustly map noisy image patches to the latent representations corresponding to important visual concepts of each object class, resulting in greater robustness of the network against noises and occlusion as well as better fine-grained recognition.
283 - Cheng Qian 2021
Understanding the basic operational logics of the nervous system is essential to advancing neuroscientific research. However, theoretical efforts to tackle this fundamental problem are lacking, despite the abundant empirical data about the brain that has been collected in the past few decades. To address this shortcoming, this document introduces a hypothetical framework for the functional nature of primitive neural networks. It analyzes the idea that the activity of neurons and synapses can symbolically reenact the dynamic changes in the world and thus enable an adaptive system of behavior. More significantly, the network achieves this without participating in an algorithmic structure. When a neurons activation represents some symbolic element in the environment, each of its synapses can indicate a potential change to the element and its future state. The efficacy of a synaptic connection further specifies the elements particular probability for, or contribution to, such a change. As it fires, a neurons activation is transformed to its postsynaptic targets, resulting in a chronological shift of the represented elements. As the inherent function of summation in a neuron integrates the various presynaptic contributions, the neural network mimics the collective causal relationship of events in the observed environment.
Most nervous systems encode information about stimuli in the responding activity of large neuronal networks. This activity often manifests itself as dynamically coordinated sequences of action potentials. Since multiple electrode recordings are now a standard tool in neuroscience research, it is important to have a measure of such network-wide behavioral coordination and information sharing, applicable to multiple neural spike train data. We propose a new statistic, informational coherence, which measures how much better one unit can be predicted by knowing the dynamical state of another. We argue informational coherence is a measure of association and shared information which is superior to traditional pairwise measures of synchronization and correlation. To find the dynamical states, we use a recently-introduced algorithm which reconstructs effective state spaces from stochastic time series. We then extend the pairwise measure to a multivariate analysis of the network by estimating the network multi-information. We illustrate our method by testing it on a detailed model of the transition from gamma to beta rhythms.
Neuronal networks are controlled by a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a minimal model of the preBotzinger complex, a small neuronal network that controls the bre athing rhythm of mammals through periodic firing bursts. We show that the properties of a such a randomly connected network of identical excitatory neurons are fundamentally different from those of uniformly connected neuronal networks as described by mean-field theory. We show that (i) the connectivity properties of the networks determines the location of emergent pacemakers that trigger the firing bursts and (ii) that the collective desensitization that terminates the firing bursts is determined again by the network connectivity, through k-core clusters of neurons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا