ﻻ يوجد ملخص باللغة العربية
Most nervous systems encode information about stimuli in the responding activity of large neuronal networks. This activity often manifests itself as dynamically coordinated sequences of action potentials. Since multiple electrode recordings are now a standard tool in neuroscience research, it is important to have a measure of such network-wide behavioral coordination and information sharing, applicable to multiple neural spike train data. We propose a new statistic, informational coherence, which measures how much better one unit can be predicted by knowing the dynamical state of another. We argue informational coherence is a measure of association and shared information which is superior to traditional pairwise measures of synchronization and correlation. To find the dynamical states, we use a recently-introduced algorithm which reconstructs effective state spaces from stochastic time series. We then extend the pairwise measure to a multivariate analysis of the network by estimating the network multi-information. We illustrate our method by testing it on a detailed model of the transition from gamma to beta rhythms.
In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reacti
Noise is an inherent part of neuronal dynamics, and thus of the brain. It can be observed in neuronal activity at different spatiotemporal scales, including in neuronal membrane potentials, local field potentials, electroencephalography, and magnetoe
Neuronal networks are controlled by a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a minimal model of the preBotzinger complex, a small neuronal network that controls the bre
The brain can be understood as a collection of interacting neuronal oscillators, but the extent to which its sustained activity is due to coupling among brain areas is still unclear. Here we study the joint dynamics of two cortical columns described
Networks of excitatory and inhibitory neurons display asynchronous irregular (AI) states, where the activities of the two populations are balanced. At the single cell level, it was shown that neurons subject to balanced and noisy synaptic inputs can