ﻻ يوجد ملخص باللغة العربية
The neural network (NN) based singing voice synthesis (SVS) systems require sufficient data to train well and are prone to over-fitting due to data scarcity. However, we often encounter data limitation problem in building SVS systems because of high data acquisition and annotation costs. In this work, we propose a Perceptual Entropy (PE) loss derived from a psycho-acoustic hearing model to regularize the network. With a one-hour open-source singing voice database, we explore the impact of the PE loss on various mainstream sequence-to-sequence models, including the RNN-based, transformer-based, and conformer-based models. Our experiments show that the PE loss can mitigate the over-fitting problem and significantly improve the synthesized singing quality reflected in objective and subjective evaluations.
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach, which utilizes text supervision during training. In this approach, we combine a bottle-neck feature extractor (BNE) with a s
Neural sequence-to-sequence text-to-speech synthesis (TTS) can produce high-quality speech directly from text or simple linguistic features such as phonemes. Unlike traditional pipeline TTS, the neural sequence-to-sequence TTS does not require manual
We propose a flexible framework that deals with both singer conversion and singers vocal technique conversion. The proposed model is trained on non-parallel corpora, accommodates many-to-many conversion, and leverages recent advances of variational a
Motivated by the attention mechanism of the human visual system and recent developments in the field of machine translation, we introduce our attention-based and recurrent sequence to sequence autoencoders for fully unsupervised representation learni
Singing voice conversion (SVC) is one promising technique which can enrich the way of human-computer interaction by endowing a computer the ability to produce high-fidelity and expressive singing voice. In this paper, we propose DiffSVC, an SVC syste