ﻻ يوجد ملخص باللغة العربية
We propose a flexible framework that deals with both singer conversion and singers vocal technique conversion. The proposed model is trained on non-parallel corpora, accommodates many-to-many conversion, and leverages recent advances of variational autoencoders. It employs separate encoders to learn disentangled latent representations of singer identity and vocal technique separately, with a joint decoder for reconstruction. Conversion is carried out by simple vector arithmetic in the learned latent spaces. Both a quantitative analysis as well as a visualization of the converted spectrograms show that our model is able to disentangle singer identity and vocal technique and successfully perform conversion of these attributes. To the best of our knowledge, this is the first work to jointly tackle conversion of singer identity and vocal technique based on a deep learning approach.
Recently, cycle-consistent adversarial network (Cycle-GAN) has been successfully applied to voice conversion to a different speaker without parallel data, although in those approaches an individual model is needed for each target speaker. In this pap
Singing voice conversion (SVC) is one promising technique which can enrich the way of human-computer interaction by endowing a computer the ability to produce high-fidelity and expressive singing voice. In this paper, we propose DiffSVC, an SVC syste
The neural network (NN) based singing voice synthesis (SVS) systems require sufficient data to train well and are prone to over-fitting due to data scarcity. However, we often encounter data limitation problem in building SVS systems because of high
This paper presents a refinement framework of WaveNet vocoders for variational autoencoder (VAE) based voice conversion (VC), which reduces the quality distortion caused by the mismatch between the training data and testing data. Conventional WaveNet
We propose a flexible framework for spectral conversion (SC) that facilitates training with unaligned corpora. Many SC frameworks require parallel corpora, phonetic alignments, or explicit frame-wise correspondence for learning conversion functions o