ترغب بنشر مسار تعليمي؟ اضغط هنا

On Benchmarking Iris Recognition within a Head-mounted Display for AR/VR Application

127   0   0.0 ( 0 )
 نشر من قبل Fadi Boutros
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Augmented and virtual reality is being deployed in different fields of applications. Such applications might involve accessing or processing critical and sensitive information, which requires strict and continuous access control. Given that Head-Mounted Displays (HMD) developed for such applications commonly contains internal cameras for gaze tracking purposes, we evaluate the suitability of such setup for verifying the users through iris recognition. In this work, we first evaluate a set of iris recognition algorithms suitable for HMD devices by investigating three well-established handcrafted feature extraction approaches, and to complement it, we also present the analysis using four deep learning models. While taking into consideration the minimalistic hardware requirements of stand-alone HMD, we employ and adapt a recently developed miniature segmentation model (EyeMMS) for segmenting the iris. Further, to account for non-ideal and non-collaborative capture of iris, we define a new iris quality metric that we termed as Iris Mask Ratio (IMR) to quantify the iris recognition performance. Motivated by the performance of iris recognition, we also propose the continuous authentication of users in a non-collaborative capture setting in HMD. Through the experiments on a publicly available OpenEDS dataset, we show that performance with EER = 5% can be achieved using deep learning methods in a general setting, along with high accuracy for continuous user authentication.



قيم البحث

اقرأ أيضاً

We suggest a rasterization pipeline tailored towards the need of head-mounted displays (HMD), where latency and field-of-view requirements pose new challenges beyond those of traditional desktop displays. Instead of rendering and warping for low late ncy, or using multiple passes for foveation, we show how both can be produced directly in a single perceptual rasterization pass. We do this with per-fragment ray-casting. This is enabled by derivations of tight space-time-fovea pixel bounds, introducing just enough flexibility for requisite geometric tests, but retaining most of the the simplicity and efficiency of the traditional rasterizaton pipeline. To produce foveated images, we rasterize to an image with spatially varying pixel density. To reduce latency, we extend the image formation model to directly produce rolling images where the time at each pixel depends on its display location. Our approach overcomes limitations of warping with respect to disocclusions, object motion and view-dependent shading, as well as geometric aliasing artifacts in other foveated rendering techniques. A set of perceptual user studies demonstrates the efficacy of our approach.
Mobile virtual reality (VR) head mounted displays (HMD) have become popular among consumers in recent years. In this work, we demonstrate real-time egocentric hand gesture detection and localization on mobile HMDs. Our main contributions are: 1) A no vel mixed-reality data collection tool to automatic annotate bounding boxes and gesture labels; 2) The largest-to-date egocentric hand gesture and bounding box dataset with more than 400,000 annotated frames; 3) A neural network that runs real time on modern mobile CPUs, and achieves higher than 76% precision on gesture recognition across 8 classes.
414 - Anton Andreev 2019
In this article, we explore the availability of head-mounted display (HMD) devices which can be coupled in a seamless way with P300-based brain-computer interfaces (BCI) using electroencephalography (EEG). The P300 is an event-related potential appea ring about 300ms after the onset of a stimulation. The recognition of this potential on the ongoing EEG requires the knowledge of the exact onset of the stimuli. In other words, the stimulations presented in the HMD must be perfectly synced with the acquisition of the EEG signal. This is done through a process called tagging. The tagging must be performed in a reliable and robust way so as to guarantee the recognition of the P300 and thus the performance of the BCI. An HMD device should also be able to render images fast enough to allow an accurate perception of the stimulations, and equally to not perturb the acquisition of the EEG signal. In addition, an affordable HMD device is needed for both research and entertainment purposes. In this study, we selected and tested two HMD configurations.
Recent research has proposed teleoperation of robotic and aerial vehicles using head motion tracked by a head-mounted display (HMD). First-person views of the vehicles are usually captured by onboard cameras and presented to users through the display panels of HMDs. This provides users with a direct, immersive and intuitive interface for viewing and control. However, a typically overlooked factor in such designs is the latency introduced by the vehicle dynamics. As head motion is coupled with visual updates in such applications, visual and control latency always exists between the issue of control commands by head movements and the visual feedback received at the completion of the attitude adjustment. This causes a discrepancy between the intended motion, the vestibular cue and the visual cue and may potentially result in simulator sickness. No research has been conducted on how various levels of visual and control latency introduced by dynamics in robots or aerial vehicles affect users performance and the degree of simulator sickness elicited. Thus, it is uncertain how much performance is degraded by latency and whether such designs are comfortable from the perspective of users. To address these issues, we studied a prototyped scenario of a head motion controlled quadcopter using an HMD. We present a virtual reality (VR) paradigm to systematically assess the effects of visual and control latency in simulated drone control scenarios.
Head gesture is a natural means of face-to-face communication between people but the recognition of head gestures in the context of virtual reality and use of head gesture as an interface for interacting with virtual avatars and virtual environments have been rarely investigated. In the current study, we present an approach for real-time head gesture recognition on head-mounted displays using Cascaded Hidden Markov Models. We conducted two experiments to evaluate our proposed approach. In experiment 1, we trained the Cascaded Hidden Markov Models and assessed the offline classification performance using collected head motion data. In experiment 2, we characterized the real-time performance of the approach by estimating the latency to recognize a head gesture with recorded real-time classification data. Our results show that the proposed approach is effective in recognizing head gestures. The method can be integrated into a virtual reality system as a head gesture interface for interacting with virtual worlds.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا