ﻻ يوجد ملخص باللغة العربية
Augmented and virtual reality is being deployed in different fields of applications. Such applications might involve accessing or processing critical and sensitive information, which requires strict and continuous access control. Given that Head-Mounted Displays (HMD) developed for such applications commonly contains internal cameras for gaze tracking purposes, we evaluate the suitability of such setup for verifying the users through iris recognition. In this work, we first evaluate a set of iris recognition algorithms suitable for HMD devices by investigating three well-established handcrafted feature extraction approaches, and to complement it, we also present the analysis using four deep learning models. While taking into consideration the minimalistic hardware requirements of stand-alone HMD, we employ and adapt a recently developed miniature segmentation model (EyeMMS) for segmenting the iris. Further, to account for non-ideal and non-collaborative capture of iris, we define a new iris quality metric that we termed as Iris Mask Ratio (IMR) to quantify the iris recognition performance. Motivated by the performance of iris recognition, we also propose the continuous authentication of users in a non-collaborative capture setting in HMD. Through the experiments on a publicly available OpenEDS dataset, we show that performance with EER = 5% can be achieved using deep learning methods in a general setting, along with high accuracy for continuous user authentication.
We suggest a rasterization pipeline tailored towards the need of head-mounted displays (HMD), where latency and field-of-view requirements pose new challenges beyond those of traditional desktop displays. Instead of rendering and warping for low late
Mobile virtual reality (VR) head mounted displays (HMD) have become popular among consumers in recent years. In this work, we demonstrate real-time egocentric hand gesture detection and localization on mobile HMDs. Our main contributions are: 1) A no
In this article, we explore the availability of head-mounted display (HMD) devices which can be coupled in a seamless way with P300-based brain-computer interfaces (BCI) using electroencephalography (EEG). The P300 is an event-related potential appea
Recent research has proposed teleoperation of robotic and aerial vehicles using head motion tracked by a head-mounted display (HMD). First-person views of the vehicles are usually captured by onboard cameras and presented to users through the display
Head gesture is a natural means of face-to-face communication between people but the recognition of head gestures in the context of virtual reality and use of head gesture as an interface for interacting with virtual avatars and virtual environments