ترغب بنشر مسار تعليمي؟ اضغط هنا

Engineering study on the use of Head-Mounted display for Brain- Computer Interface

415   0   0.0 ( 0 )
 نشر من قبل Gregoire Cattan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Anton Andreev




اسأل ChatGPT حول البحث

In this article, we explore the availability of head-mounted display (HMD) devices which can be coupled in a seamless way with P300-based brain-computer interfaces (BCI) using electroencephalography (EEG). The P300 is an event-related potential appearing about 300ms after the onset of a stimulation. The recognition of this potential on the ongoing EEG requires the knowledge of the exact onset of the stimuli. In other words, the stimulations presented in the HMD must be perfectly synced with the acquisition of the EEG signal. This is done through a process called tagging. The tagging must be performed in a reliable and robust way so as to guarantee the recognition of the P300 and thus the performance of the BCI. An HMD device should also be able to render images fast enough to allow an accurate perception of the stimulations, and equally to not perturb the acquisition of the EEG signal. In addition, an affordable HMD device is needed for both research and entertainment purposes. In this study, we selected and tested two HMD configurations.



قيم البحث

اقرأ أيضاً

Recent research has proposed teleoperation of robotic and aerial vehicles using head motion tracked by a head-mounted display (HMD). First-person views of the vehicles are usually captured by onboard cameras and presented to users through the display panels of HMDs. This provides users with a direct, immersive and intuitive interface for viewing and control. However, a typically overlooked factor in such designs is the latency introduced by the vehicle dynamics. As head motion is coupled with visual updates in such applications, visual and control latency always exists between the issue of control commands by head movements and the visual feedback received at the completion of the attitude adjustment. This causes a discrepancy between the intended motion, the vestibular cue and the visual cue and may potentially result in simulator sickness. No research has been conducted on how various levels of visual and control latency introduced by dynamics in robots or aerial vehicles affect users performance and the degree of simulator sickness elicited. Thus, it is uncertain how much performance is degraded by latency and whether such designs are comfortable from the perspective of users. To address these issues, we studied a prototyped scenario of a head motion controlled quadcopter using an HMD. We present a virtual reality (VR) paradigm to systematically assess the effects of visual and control latency in simulated drone control scenarios.
In this exploratory study, we examine the possibilities of non-invasive Brain-Computer Interface (BCI) in the context of Smart Home Technology (SHT) targeted at older adults. During two workshops, one stationary, and one online via Zoom, we researche d the insights of the end users concerning the potential of the BCI in the SHT setting. We explored its advantages and drawbacks, and the features older adults see as vital as well as the ones that they would benefit from. Apart from evaluating the participants perception of such devices during the two workshops we also analyzed some key considerations resulting from the insights gathered during the workshops, such as potential barriers, ways to mitigate them, strengths and opportunities connected to BCI. These may be useful for designing BCI interaction paradigms and pinpointing areas of interest to pursue in further studies.
With the mounting global interest for optical see-through head-mounted displays (OST-HMDs) across medical, industrial and entertainment settings, many systems with different capabilities are rapidly entering the market. Despite such variety, they all require display calibration to create a proper mixed reality environment. With the aid of tracking systems, it is possible to register rendered graphics with tracked objects in the real world. We propose a calibration procedure to properly align the coordinate system of a 3D virtual scene that the user sees with that of the tracker. Our method takes a blackbox approach towards the HMD calibration, where the trackers data is its input and the 3D coordinates of a virtual object in the observers eye is the output; the objective is thus to find the 3D projection that aligns the virtual content with its real counterpart. In addition, a faster and more intuitive version of this calibration is introduced in which the user simultaneously aligns multiple points of a single virtual 3D object with its real counterpart; this reduces the number of required repetitions in the alignment from 20 to only 4, which leads to a much easier calibration task for the user. In this paper, both internal (HMD camera) and external tracking systems are studied. We perform experiments with Microsoft HoloLens, taking advantage of its self localization and spatial mapping capabilities to eliminate the requirement for line of sight from the HMD to the object or external tracker. The experimental results indicate an accuracy of up to 4 mm in the average reprojection error based on two separate evaluation methods. We further perform experiments with the internal tracking on the Epson Moverio BT-300 to demonstrate that the method can provide similar results with other HMDs.
We suggest a rasterization pipeline tailored towards the need of head-mounted displays (HMD), where latency and field-of-view requirements pose new challenges beyond those of traditional desktop displays. Instead of rendering and warping for low late ncy, or using multiple passes for foveation, we show how both can be produced directly in a single perceptual rasterization pass. We do this with per-fragment ray-casting. This is enabled by derivations of tight space-time-fovea pixel bounds, introducing just enough flexibility for requisite geometric tests, but retaining most of the the simplicity and efficiency of the traditional rasterizaton pipeline. To produce foveated images, we rasterize to an image with spatially varying pixel density. To reduce latency, we extend the image formation model to directly produce rolling images where the time at each pixel depends on its display location. Our approach overcomes limitations of warping with respect to disocclusions, object motion and view-dependent shading, as well as geometric aliasing artifacts in other foveated rendering techniques. A set of perceptual user studies demonstrates the efficacy of our approach.
141 - Zhe Sun , Zihao Huang , Feng Duan 2020
Brain-computer interface (BCI) technologies have been widely used in many areas. In particular, non-invasive technologies such as electroencephalography (EEG) or near-infrared spectroscopy (NIRS) have been used to detect motor imagery, disease, or me ntal state. It has been already shown in literature that the hybrid of EEG and NIRS has better results than their respective individual signals. The fusion algorithm for EEG and NIRS sources is the key to implement them in real-life applications. In this research, we propose three fusion methods for the hybrid of the EEG and NIRS-based brain-computer interface system: linear fusion, tensor fusion, and $p$th-order polynomial fusion. Firstly, our results prove that the hybrid BCI system is more accurate, as expected. Secondly, the $p$th-order polynomial fusion has the best classification results out of the three methods, and also shows improvements compared with previous studies. For a motion imagery task and a mental arithmetic task, the best detection accuracy in previous papers were 74.20% and 88.1%, whereas our accuracy achieved was 77.53% and 90.19% . Furthermore, unlike complex artificial neural network methods, our proposed methods are not as computationally demanding.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا