ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluent and Low-latency Simultaneous Speech-to-Speech Translation with Self-adaptive Training

70   0   0.0 ( 0 )
 نشر من قبل Renjie Zheng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Simultaneous speech-to-speech translation is widely useful but extremely challenging, since it needs to generate target-language speech concurrently with the source-language speech, with only a few seconds delay. In addition, it needs to continuously translate a stream of sentences, but all recent solutions merely focus on the single-sentence scenario. As a result, current approaches accumulate latencies progressively when the speaker talks faster, and introduce unnatural pauses when the speaker talks slower. To overcome these issues, we propose Self-Adaptive Translation (SAT) which flexibly adjusts the length of translations to accommodate different source speech rates. At similar levels of translation quality (as measured by BLEU), our method generates more fluent target speech (as measured by the naturalness metric MOS) with substantially lower latency than the baseline, in both Zh <-> En directions.



قيم البحث

اقرأ أيضاً

User studies have shown that reducing the latency of our simultaneous lecture translation system should be the most important goal. We therefore have worked on several techniques for reducing the latency for both components, the automatic speech reco gnition and the speech translation module. Since the commonly used commitment latency is not appropriate in our case of continuous stream decoding, we focused on word latency. We used it to analyze the performance of our current system and to identify opportunities for improvements. In order to minimize the latency we combined run-on decoding with a technique for identifying stable partial hypotheses when stream decoding and a protocol for dynamic output update that allows to revise the most recent parts of the transcription. This combination reduces the latency at word level, where the words are final and will never be updated again in the future, from 18.1s to 1.1s without sacrificing performance in terms of word error rate.
Spoken language translation applications for speech suffer due to conversational speech phenomena, particularly the presence of disfluencies. With the rise of end-to-end speech translation models, processing steps such as disfluency removal that were previously an intermediate step between speech recognition and machine translation need to be incorporated into model architectures. We use a sequence-to-sequence model to translate from noisy, disfluent speech to fluent text with disfluencies removed using the recently collected `copy-edited references for the Fisher Spanish-English dataset. We are able to directly generate fluent translations and introduce considerations about how to evaluate success on this task. This work provides a baseline for a new task, the translation of conversational speech with joint removal of disfluencies.
Encoder-decoder models provide a generic architecture for sequence-to-sequence tasks such as speech recognition and translation. While offline systems are often evaluated on quality metrics like word error rates (WER) and BLEU, latency is also a cruc ial factor in many practical use-cases. We propose three latency reduction techniques for chunk-based incremental inference and evaluate their efficiency in terms of accuracy-latency trade-off. On the 300-hour How2 dataset, we reduce latency by 83% to 0.8 second by sacrificing 1% WER (6% rel.) compared to offline transcription. Although our experiments use the Transformer, the hypothesis selection strategies are applicable to other encoder-decoder models. To avoid expensive re-computation, we use a unidirectionally-attending encoder. After an adaptation procedure to partial sequences, the unidirectional model performs on-par with the original model. We further show that our approach is also applicable to low-latency speech translation. On How2 English-Portuguese speech translation, we reduce latency to 0.7 second (-84% rel.) while incurring a loss of 2.4 BLEU points (5% rel.) compared to the offline system.
Simultaneous text translation and end-to-end speech translation have recently made great progress but little work has combined these tasks together. We investigate how to adapt simultaneous text translation methods such as wait-k and monotonic multih ead attention to end-to-end simultaneous speech translation by introducing a pre-decision module. A detailed analysis is provided on the latency-quality trade-offs of combining fixed and flexible pre-decision with fixed and flexible policies. We also design a novel computation-aware latency metric, adapted from Average Lagging.
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation. Previous work addresses the problem by training an attention-based s equence-to-sequence model that maps source speech spectrograms into target spectrograms. To tackle the challenge of modeling continuous spectrogram features of the target speech, we propose to predict the self-supervised discrete representations learned from an unlabeled speech corpus instead. When target text transcripts are available, we design a multitask learning framework with joint speech and text training that enables the model to generate dual mode output (speech and text) simultaneously in the same inference pass. Experiments on the Fisher Spanish-English dataset show that predicting discrete units and joint speech and text training improve model performance by 11 BLEU compared with a baseline that predicts spectrograms and bridges 83% of the performance gap towards a cascaded system. When trained without any text transcripts, our model achieves similar performance as a baseline that predicts spectrograms and is trained with text data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا