ﻻ يوجد ملخص باللغة العربية
Background: Eclipse effect of the neutron and proton in a deuteron target is essential to correctly describe high-energy deuteron scattering. The nucleus-deuteron scattering needs information not only on the nucleus-proton but also the nucleus-neutron interaction, for which no direct measurement of the nucleus-neutron cross sections is available for unstable nuclei. Purpose: We systematically evaluated the total reaction cross sections by a deuteron target to explore the feasibility of extracting the nucleus-neutron interaction from measurable cross sections. Methods: High-energy nucleus-deuteron collision is described by the Glauber model, in which the proton and neutron configuration of the deuteron is explicitly taken into account. Results: Our calculation reproduces available experimental total reaction cross section data on the nucleus-deuteron scattering. The possibility of extracting the nucleus-neutron total reaction cross section from nucleus-deuteron and nucleus-proton total reaction cross sections is explored. The total reaction cross sections of a nucleus by proton, neutron, and deuteron targets can be expressed, to good accuracy, in terms of the nuclear matter radius and neutron skin thickness. Incident-energy dependence of the total reaction cross sections is examined. Conclusions: The total reaction cross section on a deuteron target includes information on both the nucleus-neutron and nucleus-proton profile functions. Measuring the cross sections by deuteron and proton targets is a promising tool to extract the nuclear size properties.
An improved procedure is suggested for finding the total photoabsorption cross section on the neutron from data on the deuteron at energies < 1.5 GeV. It includes unfolding of smearing effects caused by Fermi motion of nucleons in the deuteron and al
The reaction cross section $sigma_R$ is useful to determine the neutron radius $R_n$ as well as the matter radius $R_m$. The chiral (Kyushu) $g$-matrix folding model for $^{12}$C scattering on $^{9}$Be, $^{12}$C, $^{27}$Al targets was tested in the
{bf Background:} Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with GHFB+AMP, we determined $r_{rm skin}^{208}=0.25$fm from the central values of $sigma_{rm R}$ of p+$^{208}$Pb scattering in $E_{rm in}=40-81$MeV. Th
Background: Using the chiral (Kyushu) $g$-matrix folding model with the densities calculated with Gogny-HFB (GHFB) with the angular momentum projection (AMP), we determined the central values of matter radius and neutron skin from the central values
The elastic scattering of the radioactive halo nucleus 6He on 27Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential(SPP) was used and its diffusenes