ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastic Scattering and Total Reaction Cross Section for the 6He + 27Al System

54   0   0.0 ( 0 )
 نشر من قبل Mahir S. Hussein
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The elastic scattering of the radioactive halo nucleus 6He on 27Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential(SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6He on 27Al are similar to those for stable, weakly bound projectiles as {6,7}Li, 9Be and larger than stable, tightly bound projectile as 16O on 27Al.

قيم البحث

اقرأ أيضاً

Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatibl e with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.
The differential cross section for proton-proton elastic scattering has been measured at a beam energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12-16 degrees to 25-30 degrees, depending on the en ergy. Absolute normalisations of typically 3% were achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon a partial wave analysis. After extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.
76 - J. Klaja , P. Moskal , S. D. Bass 2010
The upper limit of the total cross section for the pn --> pn eta reaction has been determined near the kinematical threshold in the excess energy range from 0 to 24 MeV. The measurement was performed using the COSY-11 detector setup, a deuteron clust er target, and the proton beam of COSY with a momentum of 3.35 GeV/c. The energy dependence of the upper limit of the cross section was extracted exploiting the Fermi momenta of nucleons inside the deuteron. Comparison of the determined upper limit of the ratio R_eta = sigma(pn --> pn eta) / sigma(pp --> pp eta) with the corresponding ratio for eta-meson production does not favor the dominance of the N*(1535) resonance in the production process of the eta meson and suggests nonidentical production mechanisms for eta and eta mesons.
We have determined the transparency of the nuclear medium to kaons from $A(e,e^{} K^{+})$ measurements on $^{12}$C, $^{63}$Cu, and $^{197}$Au targets. The measurements were performed at the Jefferson Laboratory and span a range in four-momentum-trans fer squared Q$^2$=1.1 -- 3.0 GeV$^2$. The nuclear transparency was defined as the ratio of measured kaon electroproduction cross sections with respect to deuterium, ($sigma^{A}/sigma^{D}$). We further extracted the atomic number ($A$) dependence of the transparency as parametrized by $T= (A/2)^{alpha-1}$ and, within a simple model assumption, the in-medium effective kaon-nucleon cross sections. The effective cross sections extracted from the electroproduction data are found to be smaller than the free cross sections determined from kaon-nucleon scattering experiments, and the parameter $alpha$ was found to be significantly larger than those obtained from kaon-nucleus scattering. We have included similar comparisons between pion- and proton-nucleon effective cross sections as determined from electron scattering experiments, and pion-nucleus and proton-nucleus scattering data.
The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low magnetic field and at high temperat ure. Two approaches based on local one-body potentials were applied to investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the global systematics of stable nuclei. A semimicroscopic analysis with a alpha+n+n cluster folding model suggests that the interaction between a proton and the alpha core is essentially important in describing the p+6He elastic scattering. The data are also compared with fully microscopic analyses using non-local optical potentials based on nucleon-nucleon g-matrices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا