ﻻ يوجد ملخص باللغة العربية
Burton-Cabrera-Frank (BCF) theory has proven to be a versatile analysis to relate surface morphology and dynamics during crystal growth to the underlying mechanisms of adatom diffusion and attachment at steps. For an important class of crystal surfaces, including the basal planes of hexagonal close-packed and related systems, the steps in a sequence on a vicinal surface can exhibit properties that alternate from step to step. Here we develop BCF theory for such surfaces, to relate observables such as the alternating terrace widths as a function of growth conditions to the kinetic coefficients for adatom attachment at steps. We include the effects of step transparency and step-step repulsion. A general solution is obtained for the dynamics of the terrace widths assuming quasi-steady-state adatom distributions on the terraces, and an explicit simplified analytical solution is obtained under widely applicable approximations. We obtain expressions for the steady-state terrace fractions as a function of growth rate. Limiting cases of diffusion-limited, attachment-limited, and mixed kinetics are considered.
The propagation of sidewall steps during the growth of nanowires is calculated in the frame of the Burton-Cabrera-Frank model. The stable shape of the nanowire comprises a cylinder section on top of a cone section: their characteristics are obtained
Miscut surfaces of layered crystals can exhibit a stair-like sequence of terraces having periodic variation in their atomic structure. For hexagonal close-packed and related crystal structures with an {alpha}{beta}{alpha}{beta} stacking sequence, the
For more than three decades, measurement of terrace width distributions (TWDs) of vicinal crystal surfaces have been recognized as arguably the best way to determine the dimensionless strength $tilde{A}$ of the elastic repulsion between steps. For su
The stacking sequence of hexagonal close-packed and related crystals typically results in steps on vicinal {0001} surfaces that have alternating A and B structures with different growth kinetics. However, because it is difficult to experimentally ide
We study current-induced step bunching and wandering instabilities with subsequent pattern formations on vicinal surfaces. A novel two-region diffusion model is developed, where we assume that there are different diffusion rates on terraces and in a