ﻻ يوجد ملخص باللغة العربية
We consider a cell-free hybrid massive multiple-input multiple-output (MIMO) system with $K$ users and $M$ access points (APs), each with $N_a$ antennas and $N_r< N_a$ radio frequency (RF) chains. When $Kll M{N_a}$, efficient uplink channel estimation and data detection with reduced number of pilots can be performed based on low-rank matrix completion. However, such a scheme requires the central processing unit (CPU) to collect received signals from all APs, which may enable the CPU to infer the private information of user locations. We therefore develop and analyze privacy-preserving channel estimation schemes under the framework of differential privacy (DP). As the key ingredient of the channel estimator, two joint differentially private noisy matrix completion algorithms based respectively on Frank-Wolfe iteration and singular value decomposition are presented. We provide an analysis on the tradeoff between the privacy and the channel estimation error. In particular, we show that the estimation error can be mitigated while maintaining the same privacy level by increasing the payload size with fixed pilot size; and the scaling laws of both the privacy-induced and privacy-independent error components in terms of payload size are characterized. Simulation results are provided to further demonstrate the tradeoff between privacy and channel estimation performance.
Terahertz (THz) communication is widely considered as a key enabler for future 6G wireless systems. However, THz links are subject to high propagation losses and inter-symbol interference due to the frequency selectivity of the channel. Massive multi
In the context of cell-free massive multi-input multi-output (mMIMO), zero-forcing precoding (ZFP) requires the exchange of instantaneous channel state information and precoded data symbols via a fronthaul network. It causes considerable propagation
Cell-free (CF) massive multiple-input multiple-output (MIMO) is a promising solution to provide uniform good performance for unmanned aerial vehicle (UAV) communications. In this paper, we propose the UAV communication with wireless power transfer (W
Terahertz (THz) communication is considered to be a promising technology for future 6G network. To overcome the severe attenuation and relieve the high power consumption, massive MIMO with hybrid precoding has been widely considered for THz communica
The Terahertz band is envisioned to meet the demanding 100 Gbps data rates for 6G wireless communications. Aiming at combating the distance limitation problem with low hardware-cost, ultra-massive MIMO with hybrid beamforming is promising. However, r