ﻻ يوجد ملخص باللغة العربية
Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. Previously, Hershberger and Suri [SIAM J. Comput. 1999] gave an algorithm of $O(nlog n)$ time and $O(nlog n)$ space, where $n$ is the total number of vertices of all obstacles. Recently, by modifying Hershberger and Suris algorithm, Wang [SODA 2021] reduced the space to $O(n)$ while the runtime of the algorithm is still $O(nlog n)$. In this paper, we present a new algorithm of $O(n+hlog h)$ time and $O(n)$ space, provided that a triangulation of the free space is given, where $h$ is the number of obstacles. The algorithm, which improves the previous work when $h=o(n)$, is optimal in both time and space as $Omega(n+hlog h)$ is a lower bound on the runtime. Our algorithm builds a shortest path map for a source point $s$, so that given any query point $t$, the shortest path length from $s$ to $t$ can be computed in $O(log n)$ time and a shortest $s$-$t$ path can be produced in additional time linear in the number of edges of the path.
Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. The previous best algorithm
Let $mathcal{P}$ be a polygonal domain of $h$ holes and $n$ vertices. We study the problem of constructing a data structure that can compute a shortest path between $s$ and $t$ in $mathcal{P}$ under the $L_1$ metric for any two query points $s$ and $
We consider the problem of finding minimum-link rectilinear paths in rectilinear polygonal domains in the plane. A path or a polygon is rectilinear if all its edges are axis-parallel. Given a set $mathcal{P}$ of $h$ pairwise-disjoint rectilinear poly
We consider the online search problem in which a server starting at the origin of a $d$-dimensional Euclidean space has to find an arbitrary hyperplane. The best-possible competitive ratio and the length of the shortest curve from which each point on
This paper presents an optimal $Theta(n log n)$ algorithm for determining time-minimal rectilinear paths among $n$ transient rectilinear obstacles. An obstacle is transient if it exists in the scene only for a specific time interval, i.e., it appears