ﻻ يوجد ملخص باللغة العربية
In spoken question answering, QA systems are designed to answer questions from contiguous text spans within the related speech transcripts. However, the most natural way that human seek or test their knowledge is via human conversations. Therefore, we propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling QA systems to model complex dialogues flow given the speech utterances and text corpora. In this task, our main objective is to build a QA system to deal with conversational questions both in spoken and text forms, and to explore the plausibility of providing more cues in spoken documents with systems in information gathering. To this end, instead of adopting automatically generated speech transcripts with highly noisy data, we propose a novel unified data distillation approach, DDNet, which directly fuse audio-text features to reduce the misalignment between automatic speech recognition hypotheses and the reference transcriptions. In addition, to evaluate the capacity of QA systems in a dialogue-style interaction, we assemble a Spoken Conversational Question Answering (Spoken-CoQA) dataset with more than 120k question-answer pairs. Experiments demonstrate that our proposed method achieves superior performance in spoken conversational question answering.
In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations. Most SCQA systems have considered only retrieving
In this paper, we address the task of spoken language understanding. We present a method for translating spoken sentences from one language into spoken sentences in another language. Given spectrogram-spectrogram pairs, our model can be trained compl
Spoken question answering (SQA) is a challenging task that requires the machine to fully understand the complex spoken documents. Automatic speech recognition (ASR) plays a significant role in the development of QA systems. However, the recent work s
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow given the speech utterances and text corpora. Different from traditional text question answering (QA) tasks, SCQA involves audio signal processing, passa
We propose an end-to-end approach for synthetic QA data generation. Our model comprises a single transformer-based encoder-decoder network that is trained end-to-end to generate both answers and questions. In a nutshell, we feed a passage to the enco