ﻻ يوجد ملخص باللغة العربية
Machine learning models based on Deep Neural Networks (DNNs) are increasingly deployed in a wide range of applications ranging from self-driving cars to COVID-19 treatment discovery. To support the computational power necessary to learn a DNN, cloud environments with dedicated hardware support have emerged as critical infrastructure. However, there are many integrity challenges associated with outsourcing computation. Various approaches have been developed to address these challenges, building on trusted execution environments (TEE). Yet, no existing approach scales up to support realistic integrity-preserving DNN model training for heavy workloads (deep architectures and millions of training examples) without sustaining a significant performance hit. To mitigate the time gap between pure TEE (full integrity) and pure GPU (no integrity), we combine random verification of selected computation steps with systematic adjustments of DNN hyper-parameters (e.g., a narrow gradient clipping range), hence limiting the attackers ability to shift the model parameters significantly provided that the step is not selected for verification during its training phase. Experimental results show the new approach achieves 2X to 20X performance improvement over pure TEE based solution while guaranteeing a very high probability of integrity (e.g., 0.999) with respect to state-of-the-art DNN backdoor attacks.
ARM TrustZone is the de-facto hardware TEE implementation on mobile devices like smartphones. As a vendor-centric TEE, TrustZone greatly overlooks the strong protection demands and requirements from the App developers. Several security solutions have
Privacy and security-related concerns are growing as machine learning reaches diverse application domains. The data holders want to train with private data while exploiting accelerators, such as GPUs, that are hosted in the cloud. However, Cloud syst
Data privacy is unarguably of extreme importance. Nonetheless, there exist various daunting challenges to safe-guarding data privacy. These challenges stem from the fact that data owners have little control over their data once it has transgressed th
Trusted Execution Environments (TEEs) are used to protect sensitive data and run secure execution for security-critical applications, by providing an environment isolated from the rest of the system. However, over the last few years, TEEs have been p
Existing speculative execution attacks are limited to breaching confidentiality of data beyond privilege boundary, the so-called spectre-type attacks. All of them utilize the changes in microarchitectural buffers made by the speculative execution to