ﻻ يوجد ملخص باللغة العربية
Trusted Execution Environments (TEEs) are used to protect sensitive data and run secure execution for security-critical applications, by providing an environment isolated from the rest of the system. However, over the last few years, TEEs have been proven weak, as either TEEs built upon security-oriented hardware extensions (e.g., Arm TrustZone) or resorting to dedicated secure elements were exploited multiple times. In this project, we introduce Trusted Execution Environments On-Demand (TEEOD), a novel TEE design that leverages the programmable logic (PL) in the heterogeneous system on chips (SoC) as the secure execution environment. Unlike other TEE designs, TEEOD can provide high-bandwidth connections and physical on-chip isolation. We implemented a proof-of-concept (PoC) implementation targeting an Ultra96-V2 platform. The conducted evaluation demonstrated TEEOD can host up to 6 simultaneous enclaves with a resource usage per enclave of 7.0%, 3.8%, and 15.3% of the total LUTs, FFs, and BRAMS, respectively. To demonstrate the practicability of TEEOD in real-world applications, we successfully run a legacy open-source Bitcoin wallet.
ARM TrustZone is the de-facto hardware TEE implementation on mobile devices like smartphones. As a vendor-centric TEE, TrustZone greatly overlooks the strong protection demands and requirements from the App developers. Several security solutions have
Data privacy is unarguably of extreme importance. Nonetheless, there exist various daunting challenges to safe-guarding data privacy. These challenges stem from the fact that data owners have little control over their data once it has transgressed th
In-storage computing with modern solid-state drives (SSDs) enables developers to offload programs from the host to the SSD. It has been proven to be an effective approach to alleviate the I/O bottleneck. To facilitate in-storage computing, many frame
Scientific computing sometimes involves computation on sensitive data. Depending on the data and the execution environment, the HPC (high-performance computing) user or data provider may require confidentiality and/or integrity guarantees. To study t
Machine learning models based on Deep Neural Networks (DNNs) are increasingly deployed in a wide range of applications ranging from self-driving cars to COVID-19 treatment discovery. To support the computational power necessary to learn a DNN, cloud