ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate information state for approximate planning and reinforcement learning in partially observed systems

72   0   0.0 ( 0 )
 نشر من قبل Aditya Mahajan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a theoretical framework for approximate planning and learning in partially observed systems. Our framework is based on the fundamental notion of information state. We provide two equivalent definitions of information state -- i) a function of history which is sufficient to compute the expected reward and predict its next value; ii) equivalently, a function of the history which can be recursively updated and is sufficient to compute the expected reward and predict the next observation. An information state always leads to a dynamic programming decomposition. Our key result is to show that if a function of the history (called approximate information state (AIS)) approximately satisfies the properties of the information state, then there is a corresponding approximate dynamic program. We show that the policy computed using this is approximately optimal with bounded loss of optimality. We show that several approximations in state, observation and action spaces in literature can be viewed as instances of AIS. In some of these cases, we obtain tighter bounds. A salient feature of AIS is that it can be learnt from data. We present AIS based multi-time scale policy gradient algorithms. and detailed numerical experiments with low, moderate and high dimensional environments.



قيم البحث

اقرأ أيضاً

177 - Salar Fattahi 2020
In this work, we study the problem of learning partially observed linear dynamical systems from a single sample trajectory. A major practical challenge in the existing system identification methods is the undesirable dependency of their required samp le size on the system dimension: roughly speaking, they presume and rely on sample sizes that scale linearly with respect to the system dimension. Evidently, in high-dimensional regime where the system dimension is large, it may be costly, if not impossible, to collect as many samples from the unknown system. In this paper, we will remedy this undesirable dependency on the system dimension by introducing an $ell_1$-regularized estimation method that can accurately estimate the Markov parameters of the system, provided that the number of samples scale logarithmically with the system dimension. Our result significantly improves the sample complexity of learning partially observed linear dynamical systems: it shows that the Markov parameters of the system can be learned in the high-dimensional setting, where the number of samples is significantly smaller than the system dimension. Traditionally, the $ell_1$-regularized estimators have been used to promote sparsity in the estimated parameters. By resorting to the notion of weak sparsity, we show that, irrespective of the true sparsity of the system, a similar regularized estimator can be used to reduce the sample complexity of learning partially observed linear systems, provided that the true system is inherently stable.
To rapidly learn a new task, it is often essential for agents to explore efficiently -- especially when performance matters from the first timestep. One way to learn such behaviour is via meta-learning. Many existing methods however rely on dense rew ards for meta-training, and can fail catastrophically if the rewards are sparse. Without a suitable reward signal, the need for exploration during meta-training is exacerbated. To address this, we propose HyperX, which uses novel reward bonuses for meta-training to explore in approximate hyper-state space (where hyper-states represent the environment state and the agents task belief). We show empirically that HyperX meta-learns better task-exploration and adapts more successfully to new tasks than existing methods.
Adversary emulation is an offensive exercise that provides a comprehensive assessment of a systems resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical sys tems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.
176 - Robin Henry , Damien Ernst 2021
Active network management (ANM) of electricity distribution networks include many complex stochastic sequential optimization problems. These problems need to be solved for integrating renewable energies and distributed storage into future electrical grids. In this work, we introduce Gym-ANM, a framework for designing reinforcement learning (RL) environments that model ANM tasks in electricity distribution networks. These environments provide new playgrounds for RL research in the management of electricity networks that do not require an extensive knowledge of the underlying dynamics of such systems. Along with this work, we are releasing an implementation of an introductory toy-environment, ANM6-Easy, designed to emphasize common challenges in ANM. We also show that state-of-the-art RL algorithms can already achieve good performance on ANM6-Easy when compared against a model predictive control (MPC) approach. Finally, we provide guidelines to create new Gym-ANM environments differing in terms of (a) the distribution network topology and parameters, (b) the observation space, (c) the modelling of the stochastic processes present in the system, and (d) a set of hyperparameters influencing the reward signal. Gym-ANM can be downloaded at https://github.com/robinhenry/gym-anm.
This paper focuses on finding reinforcement learning policies for control systems with hard state and action constraints. Despite its success in many domains, reinforcement learning is challenging to apply to problems with hard constraints, especiall y if both the state variables and actions are constrained. Previous works seeking to ensure constraint satisfaction, or safety, have focused on adding a projection step to a learned policy. Yet, this approach requires solving an optimization problem at every policy execution step, which can lead to significant computational costs. To tackle this problem, this paper proposes a new approach, termed Vertex Networks (VNs), with guarantees on safety during exploration and on learned control policies by incorporating the safety constraints into the policy network architecture. Leveraging the geometric property that all points within a convex set can be represented as the convex combination of its vertices, the proposed algorithm first learns the convex combination weights and then uses these weights along with the pre-calculated vertices to output an action. The output action is guaranteed to be safe by construction. Numerical examples illustrate that the proposed VN algorithm outperforms vanilla reinforcement learning in a variety of benchmark control tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا