ترغب بنشر مسار تعليمي؟ اضغط هنا

Gym-ANM: Reinforcement Learning Environments for Active Network Management Tasks in Electricity Distribution Systems

177   0   0.0 ( 0 )
 نشر من قبل Robin Henry
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Active network management (ANM) of electricity distribution networks include many complex stochastic sequential optimization problems. These problems need to be solved for integrating renewable energies and distributed storage into future electrical grids. In this work, we introduce Gym-ANM, a framework for designing reinforcement learning (RL) environments that model ANM tasks in electricity distribution networks. These environments provide new playgrounds for RL research in the management of electricity networks that do not require an extensive knowledge of the underlying dynamics of such systems. Along with this work, we are releasing an implementation of an introductory toy-environment, ANM6-Easy, designed to emphasize common challenges in ANM. We also show that state-of-the-art RL algorithms can already achieve good performance on ANM6-Easy when compared against a model predictive control (MPC) approach. Finally, we provide guidelines to create new Gym-ANM environments differing in terms of (a) the distribution network topology and parameters, (b) the observation space, (c) the modelling of the stochastic processes present in the system, and (d) a set of hyperparameters influencing the reward signal. Gym-ANM can be downloaded at https://github.com/robinhenry/gym-anm.



قيم البحث

اقرأ أيضاً

117 - Robin Henry , Damien Ernst 2021
Gym-ANM is a Python package that facilitates the design of reinforcement learning (RL) environments that model active network management (ANM) tasks in electricity networks. Here, we describe how to implement new environments and how to write code to interact with pre-existing ones. We also provide an overview of ANM6-Easy, an environment designed to highlight common ANM challenges. Finally, we discuss the potential impact of Gym-ANM on the scientific community, both in terms of research and education. We hope this package will facilitate collaboration between the power system and RL communities in the search for algorithms to control future energy systems.
154 - Yuhang Gai , Jiuming Guo , Dan Wu 2021
Reinforcement learning (RL) is always the preferred embodiment to construct the control strategy of complex tasks, like asymmetric assembly tasks. However, the convergence speed of reinforcement learning severely restricts its practical application. In this paper, the convergence is first accelerated by combining RL and compliance control. Then a completely innovative progressive extension of action dimension (PEAD) mechanism is proposed to optimize the convergence of RL algorithms. The PEAD method is verified in DDPG and PPO. The results demonstrate the PEAD method will enhance the data-efficiency and time-efficiency of RL algorithms as well as increase the stable reward, which provides more potential for the application of RL.
Traditional methods for solvability region analysis can only have inner approximations with inconclusive conservatism. Machine learning methods have been proposed to approach the real region. In this letter, we propose a deep active learning framewor k for power system solvability prediction. Compared with the passive learning methods where the training is performed after all instances are labeled, the active learning selects most informative instances to be label and therefore significantly reduce the size of labeled dataset for training. In the active learning framework, the acquisition functions, which correspond to different sampling strategies, are defined in terms of the on-the-fly posterior probability from the classifier. The IEEE 39-bus system is employed to validate the proposed framework, where a two-dimensional case is illustrated to visualize the effectiveness of the sampling method followed by the full-dimensional numerical experiments.
Adversary emulation is an offensive exercise that provides a comprehensive assessment of a systems resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical sys tems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.
The rapid growth of distributed energy resources potentially increases power grid instability. One promising strategy is to employ data in power grids to efficiently respond to abnormal events (e.g., faults) by detection and location. Unfortunately, most existing works lack physical interpretation and are vulnerable to the practical challenges: sparse observation, insufficient labeled datasets, and stochastic environment. We propose a physics-informed graph learning framework of two stages to handle these challenges when locating faults. Stage- I focuses on informing a graph neural network (GNN) with the geometrical structure of power grids; stage-II employs the physical similarity of labeled and unlabeled data samples to improve the location accuracy. We provide a random walk-based the underpinning of designing our GNNs to address the challenge of sparse observation and augment the correct prediction probability. We compare our approach with three baselines in the IEEE 123-node benchmark system, showing that the proposed method outperforms the others by significant margins, especially when label rates are low. Also, we validate the robustness of our algorithms to out-of-distribution-data (ODD) due to topology changes and load variations. Additionally, we adapt our graph learning framework to the IEEE 37-node test feeder and show high location performance with the proposed training strategy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا