ﻻ يوجد ملخص باللغة العربية
We consider the limit behavior of a one-dimensional random walk with unit jumps whose transition probabilities are modified every time the walk hits zero. The invariance principle is proved in the scheme of series where the size of modifications depends on the number of series. For the natural scaling of time and space arguments the limit process is (i) a Brownian motion if modifications are small, (ii) a linear motion with a random slope if modifications are large, and (iii) the limit process satisfies an SDE with a local time of unknown process in a drift if modifications are moderate.
We consider a simple random walk on $mathbb{Z}^d$ started at the origin and stopped on its first exit time from $(-L,L)^d cap mathbb{Z}^d$. Write $L$ in the form $L = m N$ with $m = m(N)$ and $N$ an integer going to infinity in such a way that $L^2 s
We consider a random walk with a negative drift and with a jump distribution which under Cramers change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this
We consider a random walk $tilde S$ which has different increment distributions in positive and negative half-planes. In the upper half-plane the increments are mean-zero i.i.d. with finite variance. In the lower half-plane we consider two cases: inc
We introduce a system of coalescing random paths with radialbehavior in a subsetof the plane. We call it theDiscrete Radial Poissonian Web. We show that underdiffusive scaling this family converges in distribution toa mapping of a restrictionof the Brownian Web.
A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A ra