ترغب بنشر مسار تعليمي؟ اضغط هنا

Reciprocal space mapping of magnetic order in thick epitaxial MnSi films

151   0   0.0 ( 0 )
 نشر من قبل Christian Pfleiderer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report grazing incidence small angle neutron scattering (GISANS) and complementary off-specular neutron reflectometry (OSR) of the magnetic order in a single-crystalline epitaxial MnSi film on Si(111) in the thick film limit. Providing a means of direct reciprocal space mapping, GISANS and OSR reveal a magnetic modulation perpendicular to the films under magnetic fields parallel and perpendicular to the film, where additional polarized neutron reflectometry (PNR) and magnetization measurements are in excellent agreement with the literature. Regardless of field orientation, our data does not suggest the presence of more complex spin textures, notably the formation of skyrmions. This observation establishes a distinct difference with bulk samples of MnSi of similar thickness under perpendicular field, in which a skyrmion lattice dominates the phase diagram. Extended x-ray absorption fine structure measurements suggest that small shifts of the Si positions within the unstrained unit cell control the magnetic state, representing the main difference between the films and thin bulk samples.



قيم البحث

اقرأ أيضاً

Spin excitations of magnetic thin films are the founding element for novel transport concepts in spintronics, magnonics, and magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, their behaviour in mesoscop ic films is less known due to experimental limitations. Here, we employ Resonant Inelastic X-Ray Scattering to investigate the spin excitation spectrum in mesoscopic Fe films, from bulk-like down to 3 unit cells thick. In bulk-like samples, we find isotropic, dispersive ferromagnons consistent with the dispersion observed by neutron scattering in bulk single crystals. As the thickness is reduced, these ferromagnons survive and evolve anisotropically: renormalising to lower energies along the out-of-plane direction while retaining their dispersion in the in-plane direction. This thickness dependence is captured by simple Heisenberg model calculations accounting for the confinement in the out-of-plane direction through the loss of Fe bonds. Our findings highlight the effects of mesoscopic scaling on spin dynamics and identify thickness as a knob for fine-tuning and controlling magnetic properties in films.
Mn$_{3}$Sn is a non-collinear antiferromagnet which displays a large anomalous Hall effect at room temperature. It is believed that the principal contribution to its anomalous Hall conductivity comes from Berry curvature. Moreover, dc transport and p hotoemission experiments have confirmed that Mn$_{3}$Sn may be an example of a time-reversal symmetry breaking Weyl semimetal. Due to a small, but finite moment in the room temperature inverse triangular spin structure, which allows control of the Hall current with external field, this material has garnered much interest for next generation memory devices and THz spintronics applications. In this work, we report a THz range study of oriented Mn$_{3}$Sn thin films as a function of temperature. At low frequencies we found the optical conductivity can be well described by a single Drude oscillator. The plasma frequency is strongly suppressed in a temperature dependent fashion as one enters the 260 K helical phase. This may be associated with partial gapping of the Fermi surfaces that comes from breaking translational symmetry along the c-axis. The scattering rate shows quadratic temperature dependence below 200 K, highlighting the possible important role of interactions in this compound.
103 - D. Schick , A. Bojahr , M. Herzog 2013
We investigate coherent phonon propagation in a thin film of ferroelectric PbZr0.2Ti0.8O3 (PZT) by ultrafast x-ray diffraction (UXRD) experiments, which are analyzed as time-resolved reciprocal space mapping (RSM) in order to observe the in- and out- of-plane structural dynamics simultaneously. The mosaic structure of the PZT leads to a coupling of the excited out-of-plane expansion to in-plane lattice dynamics on a picosecond timescale, which is not observed for out-of-plane compression.
We report a La2CuO4-like interlayer antiferromagnetic order in Sr2IrO4 films with large orthorhombic distortion (> 1.5%). The biaxial lattice strain in epitaxial heterostructures of Sr2IrO4/Ca3Ru2O7 lowers the crystal symmetry of Sr2IrO4 from tetrago nal (C4) to orthorhombic (C2), guiding the Ir 5d Jeff = 1/2 pseudospin moment parallel to the elongated b-axis via magnetic anisotropy. From resonant X-ray scattering experiments, we observed an antiferromagnetic order in the orthorhombic Sr2IrO4 film whose interlayer stacking pattern is inverted from that of the tetragonal Sr2IrO4 crystal. This interlayer stacking is similar to that of the orthorhombic La2CuO4, implying that the asymmetric interlayer exchange interaction along a and b-directions exceeds the anisotropic interlayer pseudo-dipolar interaction. Our result suggests that strain-induced distortion can provide a delicate knob for tuning the long-range magnetic order in quasi-two-dimensional systems by evoking the competition between the interlayer exchange coupling and the pseudo-dipolar interaction.
We have carried out Raman spectroscopy experiments to investigate two-magnon excitations in epitaxial thin films of the quasi-two-dimensional antiferromagnetic Mott insulator Sr$_2$IrO$_4$ under in-plane misfit strain. With in-plane biaxial compressi on, the energy of the two-magnon peak increases, and the peak remains observable over a wider temperature range above the Neel temperature, indicating strain-induced enhancement of the superexchange interactions between $it{J}_{eff}$ = 1/2 pseudospins. From density functional theory calculations, we have found an increase of the nearest-neighbor hopping parameter and exchange interaction with increasing biaxial compressive strain, in agreement with the experimental observations. Our experimental and theoretical results provide perspectives for systematic, theory-guided strain control of the primary exchange interactions in 5$it{d}$ transition metal oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا