ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks

184   0   0.0 ( 0 )
 نشر من قبل Jost Tobias Springenberg
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a method for learning a discriminative classifier from unlabeled or partially labeled data. Our approach is based on an objective function that trades-off mutual information between observed examples and their predicted categorical class distribution, against robustness of the classifier to an adversarial generative model. The resulting algorithm can either be interpreted as a natural generalization of the generative adversarial networks (GAN) framework or as an extension of the regularized information maximization (RIM) framework to robust classification against an optimal adversary. We empirically evaluate our method - which we dub categorical generative adversarial networks (or CatGAN) - on synthetic data as well as on challenging image classification tasks, demonstrating the robustness of the learned classifiers. We further qualitatively assess the fidelity of samples generated by the adversarial generator that is learned alongside the discriminative classifier, and identify links between the CatGAN objective and discriminative clustering algorithms (such as RIM).



قيم البحث

اقرأ أيضاً

In this article, we propose an approach that can make use of not only labeled EEG signals but also the unlabeled ones which is more accessible. We also suggest the use of data fusion to further improve the seizure prediction accuracy. Data fusion in our vision includes EEG signals, cardiogram signals, body temperature and time. We use the short-time Fourier transform on 28-s EEG windows as a pre-processing step. A generative adversarial network (GAN) is trained in an unsupervised manner where information of seizure onset is disregarded. The trained Discriminator of the GAN is then used as feature extractor. Features generated by the feature extractor are classified by two fully-connected layers (can be replaced by any classifier) for the labeled EEG signals. This semi-supervised seizure prediction method achieves area under the operating characteristic curve (AUC) of 77.68% and 75.47% for the CHBMIT scalp EEG dataset and the Freiburg Hospital intracranial EEG dataset, respectively. Unsupervised training without the need of labeling is important because not only it can be performed in real-time during EEG signal recording, but also it does not require feature engineering effort for each patient.
Generative Adversarial Networks (GANs) based semi-supervised learning (SSL) approaches are shown to improve classification performance by utilizing a large number of unlabeled samples in conjunction with limited labeled samples. However, their perfor mance still lags behind the state-of-the-art non-GAN based SSL approaches. We identify that the main reason for this is the lack of consistency in class probability predictions on the same image under local perturbations. Following the general literature, we address this issue via label consistency regularization, which enforces the class probability predictions for an input image to be unchanged under various semantic-preserving perturbations. In this work, we introduce consistency regularization into the vanilla semi-GAN to address this critical limitation. In particular, we present a new composite consistency regularization method which, in spirit, leverages both local consistency and interpolation consistency. We demonstrate the efficacy of our approach on two SSL image classification benchmark datasets, SVHN and CIFAR-10. Our experiments show that this new composite consistency regularization based semi-GAN significantly improves its performance and achieves new state-of-the-art performance among GAN-based SSL approaches.
In this article, we propose a new hypothesis testing method for directed acyclic graph (DAG). While there is a rich class of DAG estimation methods, there is a relative paucity of DAG inference solutions. Moreover, the existing methods often impose s ome specific model structures such as linear models or additive models, and assume independent data observations. Our proposed test instead allows the associations among the random variables to be nonlinear and the data to be time-dependent. We build the test based on some highly flexible neural networks learners. We establish the asymptotic guarantees of the test, while allowing either the number of subjects or the number of time points for each subject to diverge to infinity. We demonstrate the efficacy of the test through simulations and a brain connectivity network analysis.
Deep learning-based image reconstruction methods have achieved promising results across multiple MRI applications. However, most approaches require large-scale fully-sampled ground truth data for supervised training. Acquiring fully-sampled data is o ften either difficult or impossible, particularly for dynamic contrast enhancement (DCE), 3D cardiac cine, and 4D flow. We present a deep learning framework for MRI reconstruction without any fully-sampled data using generative adversarial networks. We test the proposed method in two scenarios: retrospectively undersampled fast spin echo knee exams and prospectively undersampled abdominal DCE. The method recovers more anatomical structure compared to conventional methods.
We develop a novel method for training of GANs for unsupervised and class conditional generation of images, called Linear Discriminant GAN (LD-GAN). The discriminator of an LD-GAN is trained to maximize the linear separability between distributions o f hidden representations of generated and targeted samples, while the generator is updated based on the decision hyper-planes computed by performing LDA over the hidden representations. LD-GAN provides a concrete metric of separation capacity for the discriminator, and we experimentally show that it is possible to stabilize the training of LD-GAN simply by calibrating the update frequencies between generators and discriminators in the unsupervised case, without employment of normalization methods and constraints on weights. In the class conditional generation tasks, the proposed method shows improved training stability together with better generalization performance compared to WGAN that employs an auxiliary classifier.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا