ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular polaritonics in dense mesoscopic disordered ensembles

80   0   0.0 ( 0 )
 نشر من قبل Claudiu Genes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the dependence of the vacuum Rabi splitting (VRS) on frequency disorder, vibrations, near-field effects and density in molecular polaritonics. In the mesoscopic limit, static frequency disorder alone can already introduce a loss mechanism from polaritonic states into a dark state reservoir, which we quantitatively describe, providing an analytical scaling of the VRS with the level of disorder. Disorder additionally can split a molecular ensemble into donor-type and acceptor-type molecules and the combination of vibronic coupling, dipole-dipole interactions and vibrational relaxation induces an incoherent FRET (F{o}rster resonance energy transfer) migration of excitations within the collective molecular state. This is equivalent to a dissipative disorder and has the effect of saturating and even reducing the VRS in the mesoscopic, high-density limit. Overall, this analysis allows to quantify the crucial role played by dark states in cavity quantum electrodynamics with mesoscopic, disordered ensembles.



قيم البحث

اقرأ أيضاً

We explore correlations of inhomogeneous local density of states (LDoS) for impure superconductors with different symmetries of the order parameter (s-wave and d-wave) and different types of scatterers (elastic and magnetic impurities). It turns out that the LDoS correlation function of superconductor always slowly decreases with distance up to the phase-breaking length $l_{phi}$ and its long-range spatial behavior is determined only by the dimensionality, as in normal metals. On the other hand, the energy dependence of this correlation function is sensitive to symmetry of the order parameter and nature of scatterers. Only in the simplest case of s-wave superconductor with elastic scatterers the inhomogeneous LDoS is directly connected to the corresponding characteristics of normal metal.
Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the sub-nanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of ma nipulating their rotation with an optical centrifuge. Spin-rotational coupling results in high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the non-resonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work), producing large amount of polarized electrons and converting electronic to nuclear spin polarization.
We propose an efficient method to filter out single atoms from trapped ensembles with unknown number of atoms. The method employs stimulated adiabatic passage to reversibly transfer a single atom to the Rydberg state which blocks subsequent Rydberg e xcitation of all the other atoms within the ensemble. This triggers the excitation of Rydberg blockaded atoms to short lived intermediate states and their subsequent decay to untrapped states. Using an auxiliary microwave field to carefully engineer the dissipation, we obtain a nearly deterministic single-atom source. Our method is applicable to small atomic ensembles in individual microtraps and in lattice arrays.
We show that Jaynes-Cummings dynamics can be observed in mesoscopic atomic ensembles interacting with a classical electromagnetic field in the regime of Rydberg blockade, where the time dynamics of the average number of Rydberg excitations in mesosco pic ensembles displays collapses and revivals typical of this model. As the frequency of Rabi oscillations between collective states of Rydberg blockaded ensembles depends on the number of interacting atoms, for randomly loaded optical dipole traps we predict collapses and revivals of Rabi oscillations. We have studied the effects of finite interaction strengths and finite laser line width on the visibility of the revivals. We have shown that observation of collapses and revivals of Rabi oscillations can be used as a signature of Rydberg blockade without the need to measure the exact number of Rydberg atoms.
We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting ``dipole bloc kade can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as non-classical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا