ترغب بنشر مسار تعليمي؟ اضغط هنا

Filtering single atoms from Rydberg blockaded mesoscopic ensembles

181   0   0.0 ( 0 )
 نشر من قبل David Petrosyan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an efficient method to filter out single atoms from trapped ensembles with unknown number of atoms. The method employs stimulated adiabatic passage to reversibly transfer a single atom to the Rydberg state which blocks subsequent Rydberg excitation of all the other atoms within the ensemble. This triggers the excitation of Rydberg blockaded atoms to short lived intermediate states and their subsequent decay to untrapped states. Using an auxiliary microwave field to carefully engineer the dissipation, we obtain a nearly deterministic single-atom source. Our method is applicable to small atomic ensembles in individual microtraps and in lattice arrays.

قيم البحث

اقرأ أيضاً

We show that Jaynes-Cummings dynamics can be observed in mesoscopic atomic ensembles interacting with a classical electromagnetic field in the regime of Rydberg blockade, where the time dynamics of the average number of Rydberg excitations in mesosco pic ensembles displays collapses and revivals typical of this model. As the frequency of Rabi oscillations between collective states of Rydberg blockaded ensembles depends on the number of interacting atoms, for randomly loaded optical dipole traps we predict collapses and revivals of Rabi oscillations. We have studied the effects of finite interaction strengths and finite laser line width on the visibility of the revivals. We have shown that observation of collapses and revivals of Rabi oscillations can be used as a signature of Rydberg blockade without the need to measure the exact number of Rydberg atoms.
We present schemes for geometric phase compensation in adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double seq uences of stimulated Raman adiabatic passage (STIRAP) or adiabatic rapid passage (ARP) pulses are analyzed. Switching the sign of the detuning between two STIRAP sequences, or inverting the phase between two ARP pulses, provides state transfer with well defined amplitude and phase independent of atom number in the Rydberg blockade regime. Using these pulse sequences we present protocols for universal single-qubit and two-qubit operations in atomic ensembles containing an unknown number of atoms.
We consider the Grover search algorithm implementation for a quantum register of size $N = 2^k$ using k (or k +1) microwave- and laser-driven Rydberg-blockaded atoms, following the proposal by M{o}lmer, Isenhower, and Saffman [J. Phys. B 44, 184016 ( 2011)]. We suggest some simplifications for the microwave and laser couplings, and analyze the performance of the algorithm for up to k = 4 multilevel atoms under realistic experimental conditions using quantum stochastic (Monte-Carlo) wavefunction simulations.
125 - Xiao-Feng Shi 2021
Neutral atom arrays are promising for large-scale quantum computing especially because it is possible to prepare large-scale qubit arrays. An unsolved issue is how to selectively excite one qubit deep in a 3D atomic array to Rydberg states. In this w ork, we show two methods for this purpose. The first method relies on a well-known result: in a dipole transition between two quantum states driven by two off-resonant fields of equal strength but opposite detunings $pmDelta$, the transition is characterized by two counter-rotating Rabi frequencies $Omega e^{pm iDelta t}$~[or $pmOmega e^{pm iDelta t}$ if the two fields have a $pi$-phase difference]. This pair of detuned fields lead to a time-dependent Rabi frequency $2Omega cos(Delta t)$~[or $2iOmega sin(Delta t)$], so that a full transition between the two levels is recovered. We show that when the two detuned fields are sent in different directions, one atom in a 3D optical lattice can be selectively addressed for Rydberg excitation, and when its state is restored, the state of any nontarget atoms irradiated in the light path is also restored. Moreover, we find that the Rydberg excitation by this method can significantly suppress the fundamental blockade error of a Rydberg gate, paving the way for a high-fidelity entangling gate with commonly used quasi-rectangular pulse that is easily obtained by pulse pickers. Along the way, we find a second method for single-site Rydberg addressing in 3D, where a selected target atom can be excited to Rydberg state while preserving the state of any nontarget atom due to a spin echo sequence. The capability to selectively address a target atom in 3D atomic arrays for Rydberg excitation makes it possible to design large-scale neutral-atom information processor based on Rydberg blockade.
We demonstrate experimentally that a single Rb atom excited to the $79d_{5/2}$ level blocks the subsequent excitation of a second atom located more than $10 murm m$ away. The observed probability of double excitation of $sim 30%$ is consistent with a theoretical model based on calculations of the long range dipole-dipole interaction between atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا