ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast magnetization of a dense molecular gas with an optical centrifuge

129   0   0.0 ( 0 )
 نشر من قبل Valery Milner
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong laser-induced magnetization of oxygen gas at room temperature and atmospheric pressure is achieved experimentally on the sub-nanosecond time scale. The method is based on controlling the electronic spin of paramagnetic molecules by means of manipulating their rotation with an optical centrifuge. Spin-rotational coupling results in high degree of spin polarization on the order of one Bohr magneton per centrifuged molecule. Owing to the non-resonant interaction with the laser pulses, the demonstrated technique is applicable to a broad class of paramagnetic rotors. Executed in a high-density gas, it may offer an efficient way of generating macroscopic magnetic fields remotely (as shown in this work), producing large amount of polarized electrons and converting electronic to nuclear spin polarization.

قيم البحث

اقرأ أيضاً

We use an optical centrifuge to excite coherent rotational wave packets in N$_2$O, CS$_2$ and OCS molecules with rotational quantum numbers reaching up to J=465, 690 and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high lev els of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at inter-nuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.
We report on the first experimental demonstration of enantioselective rotational control of chiral molecules with a laser field. In our experiments, two enantiomers of propylene oxide are brought to accelerated unidirectional rotation by means of an optical centrifuge. Using Coulomb explosion imaging, we show that the centrifuged molecules acquire preferential orientation perpendicular to the plane of rotation, and that the direction of this orientation depends on the relative handedness of the enantiomer and the rotating centrifuge field. The observed effect is in agreement with theoretical predictions and is reproduced in numerical simulations of the centrifuge excitation followed by Coulomb explosion of the centrifuged molecules. The demonstrated technique opens new avenues in optical enantioselective control of chiral molecules with a plethora of potential applications in differentiation, separation and purification of chiral mixtures.
We study the dependence of the vacuum Rabi splitting (VRS) on frequency disorder, vibrations, near-field effects and density in molecular polaritonics. In the mesoscopic limit, static frequency disorder alone can already introduce a loss mechanism fr om polaritonic states into a dark state reservoir, which we quantitatively describe, providing an analytical scaling of the VRS with the level of disorder. Disorder additionally can split a molecular ensemble into donor-type and acceptor-type molecules and the combination of vibronic coupling, dipole-dipole interactions and vibrational relaxation induces an incoherent FRET (F{o}rster resonance energy transfer) migration of excitations within the collective molecular state. This is equivalent to a dissipative disorder and has the effect of saturating and even reducing the VRS in the mesoscopic, high-density limit. Overall, this analysis allows to quantify the crucial role played by dark states in cavity quantum electrodynamics with mesoscopic, disordered ensembles.
We propose a cavity QED scheme to enable cross-phase modulation between two arbitrarily weak classical fields in the optical domain, using organic molecular photoswitches as a disordered intracavity nonlinear medium. We show that a long-lived vibrati onal Raman coherence between the $cis$ and $trans$ isomer states of the photoswitch can be exploited to establish the phenomenon of vacuum-induced transparency (VIT) in high-quality microcavities. We exploit this result to derive an expression for the cross-phase modulation signal and demonstrate that it is possible to surpass the detection limit imposed by absorption losses, even in the presence of strong natural energetic and orientational disorder in the medium. Possible applications of the scheme include the development of organic nanophotonic devices for all-optical switching with low photon numbers.
Terahertz spin waves could be generated on-demand via all-optical manipulation of magnetization by femtosecond laser pulse. Here, we present an energy balance model, which explains the energy transfer rates from laser pulse to electron bath coupled w ith phonon, spin, and magnetization of five different magnetic metallic thin films: Iron, Cobalt, Nickel, Gadolinium and Ni$_{2}$MnSn Heusler alloy. Two types of transient magnetization dynamics emerge in metallic magnetic thin films based on their Curie temperatures (T$_{C}$): type I (Fe, Co, and Ni with T$_{C}$ > room temperature, RT) and type II films (Gd and Ni$_{2}$MnSn with T$_{C}$ $approx$ RT). We study the effect of laser fluence and pulse width for single Gaussian laser pulses and the effect of metal film thickness on magnetization dynamics. Spectral dynamics show that broadband spin waves up to 24 THz could be generated by all-optical manipulation of magnetization in these nanofilms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا