ﻻ يوجد ملخص باللغة العربية
We consider a two-dimensional nonlinear Schr{o}dinger equation proposed in Physics to model rotational binary Bose-Einstein condensates. The nonlinearity is a logarithmic modification of the usual cubic nonlinearity. The presence of both the external confining potential and rotating frame makes it difficult to apply standard techniques to directly construct ground states, as we explain in an appendix. The goal of the present paper is to analyze the orbital stability of the set of energy minimizers under mass constraint, according to the relative strength of the confining potential compared to the angular frequency. The main novelty concerns the critical case (lowest Landau Level) where these two effects compensate exactly, and orbital stability is established by using techniques related to magnetic Schr{o}dinger operators.
A general stability criterion is derived for the D-dimensional ground states of the Gross-Pitaevskii equation, which describes attractive Bose-Einstein condensates confined in a magnetic trap. These ground states are shown to avoid the collapse in fi
In this paper, by using a compactness method, we study the Cauchy problem of the logarithmic Schr{o}dinger equation with harmonic potential. We then address the existence of ground states solutions as minimizers of the action on the Nehari manifold.
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) u
Using the finite-temperature path integral Monte Carlo method, we investigate dilute, trapped Bose gases in a quasi-two dimensional geometry. The quantum particles have short-range, s-wave interactions described by a hard-sphere potential whose core
We explore the time evolution of quasi-1D two component Bose-Einstein condensates (BECs) following a quench from one component BECs with a ${rm U}(1)$ order parameter into two component condensates with a ${rm U}(1)shorttimes{rm Z}_2$ order parameter