ﻻ يوجد ملخص باللغة العربية
We explore the time evolution of quasi-1D two component Bose-Einstein condensates (BECs) following a quench from one component BECs with a ${rm U}(1)$ order parameter into two component condensates with a ${rm U}(1)shorttimes{rm Z}_2$ order parameter. In our case, these two spin components have a propensity to phase separate, i.e., they are immiscible. Remarkably, these spin degrees of freedom can equivalently be described as a single component attractive BEC. A spatially uniform mixture of these spins is dynamically unstable, rapidly amplifing any quantum or pre-existing classical spin fluctuations. This coherent growth process drives the formation of numerous spin polarized domains, which are far from the systems ground state. At much longer times these domains grow in size, coarsening, as the system approaches equilibrium. The experimentally observed time evolution is fully consistent with our stochastic-projected Gross-Pitaevskii calculation.
We explore a new way of producing the Rashba spin-orbit coupling (SOC) for ultracold atoms by using a two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC of the Rashba type is created if the atoms pick
The problem of understanding how a coherent, macroscopic Bose-Einstein condensate (BEC) emerges from the cooling of a thermal Bose gas has attracted significant theoretical and experimental interest over several decades. The pioneering achievement of
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the s
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topologica
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) u