ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Abelian-Higgs model with noncompact gauge fields

291   0   0.0 ( 0 )
 نشر من قبل Claudio Bonati
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a noncompact lattice formulation of the three-dimensional electrodynamics with $N$-component complex scalar fields, i.e., the lattice Abelian-Higgs model with noncompact gauge fields. For any $Nge 2$, the phase diagram shows three phases differing for the behavior of the scalar-field and gauge-field correlations: the Coulomb phase (short-ranged scalar and long-ranged gauge correlations), the Higgs phase (condensed scalar-field and gapped gauge correlations), and the molecular phase (condensed scalar-field and long-ranged gauge correlations). They are separated by three transition lines meeting at a multicritical point. Their nature depends on the coexisting phases and on the number $N$ of components of the scalar field. In particular, the Coulomb-to-molecular transition line (where gauge correlations are irrelevant) is associated with the Landau-Ginzburg-Wilson $Phi^4$ theory sharing the same SU($N$) global symmetry but without explicit gauge fields. On the other hand, the Coulomb-to-Higgs transition line (where gauge correlations are relevant) turns out to be described by the continuum Abelian-Higgs field theory with explicit gauge fields. Our numerical study is based on finite-size scaling analyses of Monte Carlo simulations with $C^*$ boundary conditions (appropriate for lattice systems with noncompact gauge variables, unlike periodic boundary conditions), for several values of $N$, i.e., $N=2, 4, 10, 15$, and $25$. The numerical results agree with the renormalization-group predictions of the continuum field theories. In particular, the Coulomb-to-Higgs transitions are continuous for $Ngtrsim 10$, in agreement with the predictions of the Abelian-Higgs field theory.



قيم البحث

اقرأ أيضاً

We study a four-dimensional $U(1)$ gauge theory with the $theta$ angle, which was originally proposed by Cardy and Rabinovici. It is known that the model has the rich phase diagram thanks to the presence of both electrically and magnetically charged particles. We discuss the topological nature of the oblique confinement phase of the model at $theta=pi$, and show how its appearance can be consistent with the anomaly constraint. We also construct the $SL(2,mathbb{Z})$ self-dual theory out of the Cardy-Rabinovici model by gauging a part of its one-form symmetry. This self-duality has a mixed t Hooft anomaly with gravity, and its implications on the phase diagram is uncovered. As the model shares the same global symmetry and t Hooft anomaly with those of $SU(N)$ Yang-Mills theory, studying its topological aspects would provide us more hints to explore possible dynamics of non-Abelian gauge theories with nonzero $theta$ angles.
We investigate the phase diagram and critical behavior of three-dimensional multicomponent Abelian-Higgs models, in which an N-component complex field z_x^a of unit length and charge is coupled to compact quantum electrodynamics in the usual Wilson l attice formulation. We determine the phase diagram and study the nature of the transition line for N=2 and N=4. Two phases are identified, specified by the behavior of the gauge-invariant local composite operator Q_x^{ab} = bar{z}_x^a z_x^b - delta^{ab}/N, which plays the role of order parameter. In one phase, we have langle Q_x^{ab}rangle =0, while in the other Q_x^{ab} condenses. Gauge correlations are never critical: gauge excitations are massive for any finite coupling. The two phases are separated by a transition line. Our numerical data are consistent with the simple scenario in which the nature of the transition is independent of the gauge coupling. Therefore, for any finite positive value of the gauge coupling, we predict a continuous transition in the Heisenberg universality class for N=2 and a first-order transition for N=4. However, notable crossover phenomena emerge for large gauge couplings, when gauge fluctuations are suppressed. Such crossover phenomena are related to the unstable O(2N) fixed point, describing the behavior of the model in the infinite gauge-coupling limit.
Artificial magnetic fields and spin-orbit couplings have been recently generated in ultracold gases in view of realizing topological states of matter and frustrated magnetism in a highly-controllable environment. Despite being dynamically tunable, su ch artificial gauge fields are genuinely classical and exhibit no back-action from the neutral particles. Here we go beyond this paradigm, and demonstrate how quantized dynamical gauge fields can be created in mixtures of ultracold atoms in optical lattices. Specifically, we propose a protocol by which atoms of one species carry a magnetic flux felt by another species, hence realizing an instance of flux-attachment. This is obtained by combining coherent lattice modulation techniques with strong Hubbard interactions. We demonstrate how this setting can be arranged so as to implement lattice models displaying a local Z2 gauge symmetry, both in one and two dimensions. We also provide a detailed analysis of a ladder toy model, which features a global Z2 symmetry, and reveal the phase transitions that occur both in the matter and gauge sectors. Mastering flux-attachment in optical lattices envisages a new route towards the realization of strongly-correlated systems with properties dictated by an interplay of dynamical matter and gauge fields.
Using new as well as known results on dimerized quantum spin chains with frustration, we are able to infer some properties on the low-energy spectrum of the O(3) Nonlinear Sigma Model with a topological theta-term. In particular, for sufficiently str ong coupling, we find a range of values of theta where a singlet bound state is stable under the triplet continuum. On the basis of these results, we propose a new renormalization group flow diagram for the Nonlinear Sigma Model with theta-term.
Two-component fermionic superfluids on a lattice with an external non-Abelian gauge field give access to a variety of topological phases in presence of a sufficiently large spin imbalance. We address here the important issue of superfluidity breakdow n induced by spin imbalance by a self-consistent calculation of the pairing gap, showing which of the predicted phases will be experimentally accessible. We present the full topological phase diagram, and we analyze the connection between Chern numbers and the existence of topologically protected and non-protected edge modes. The Chern numbers are calculated via a very efficient and simple method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا