ﻻ يوجد ملخص باللغة العربية
We consider a noncompact lattice formulation of the three-dimensional electrodynamics with $N$-component complex scalar fields, i.e., the lattice Abelian-Higgs model with noncompact gauge fields. For any $Nge 2$, the phase diagram shows three phases differing for the behavior of the scalar-field and gauge-field correlations: the Coulomb phase (short-ranged scalar and long-ranged gauge correlations), the Higgs phase (condensed scalar-field and gapped gauge correlations), and the molecular phase (condensed scalar-field and long-ranged gauge correlations). They are separated by three transition lines meeting at a multicritical point. Their nature depends on the coexisting phases and on the number $N$ of components of the scalar field. In particular, the Coulomb-to-molecular transition line (where gauge correlations are irrelevant) is associated with the Landau-Ginzburg-Wilson $Phi^4$ theory sharing the same SU($N$) global symmetry but without explicit gauge fields. On the other hand, the Coulomb-to-Higgs transition line (where gauge correlations are relevant) turns out to be described by the continuum Abelian-Higgs field theory with explicit gauge fields. Our numerical study is based on finite-size scaling analyses of Monte Carlo simulations with $C^*$ boundary conditions (appropriate for lattice systems with noncompact gauge variables, unlike periodic boundary conditions), for several values of $N$, i.e., $N=2, 4, 10, 15$, and $25$. The numerical results agree with the renormalization-group predictions of the continuum field theories. In particular, the Coulomb-to-Higgs transitions are continuous for $Ngtrsim 10$, in agreement with the predictions of the Abelian-Higgs field theory.
We study a four-dimensional $U(1)$ gauge theory with the $theta$ angle, which was originally proposed by Cardy and Rabinovici. It is known that the model has the rich phase diagram thanks to the presence of both electrically and magnetically charged
We investigate the phase diagram and critical behavior of three-dimensional multicomponent Abelian-Higgs models, in which an N-component complex field z_x^a of unit length and charge is coupled to compact quantum electrodynamics in the usual Wilson l
Artificial magnetic fields and spin-orbit couplings have been recently generated in ultracold gases in view of realizing topological states of matter and frustrated magnetism in a highly-controllable environment. Despite being dynamically tunable, su
Using new as well as known results on dimerized quantum spin chains with frustration, we are able to infer some properties on the low-energy spectrum of the O(3) Nonlinear Sigma Model with a topological theta-term. In particular, for sufficiently str
Two-component fermionic superfluids on a lattice with an external non-Abelian gauge field give access to a variety of topological phases in presence of a sufficiently large spin imbalance. We address here the important issue of superfluidity breakdow